Environmental determinants of plant community change during restoration at Shaw Nature Reserve

Olivia Hajek spent 10 weeks this summer studying woodland restoration at Shaw Nature Reserve with CCSD scientist Leighton Reid. She participated in MBG’s NSF-funded Research Experience for Undergraduates (REU) program.

WildFlowers

Wildflowers in the restored Dana Brown Woods: purple milkweed (Asclepias purpurescens; left) and buffalo clover (Trifolium reflexum; right).

During my ten weeks in Missouri, I completed a research project evaluating the role environmental conditions play in restoration at Shaw Nature Reserve.  Specifically, I worked in the Dana Brown Woods management unit, a part of the Missouri Ozark foothills that features diverse plant communities across its heterogeneous landscape.  Sixteen years ago, the Dana Brown Woods was a closed-canopy woodland highly invaded by eastern red cedar.  However, restoration practices including reintroduction of fire and mechanical removal of woody shrubs like eastern red cedar have dramatically changed plant communities since 2000.  I was very fortunate coming into this project because there was extensive data about the plant communities in the Dana Brown Woods from 2001-2012 while restoration was occurring.  A local botanist, Nels Holmberg, monitored understory plants beginning a year before the first fire, creating complete information about the plant community before restoration and as it changed over time.

We wanted to see how different environmental conditions affect how plant communities change over time in response to restoration.  To answer this question, we visited 300 points across the woodland and measured several environmental parameters, including aspect, slope, rockiness, elevation, and juniper stump density (juniper stumps decay slowly, so many of the trees cut in 2006 were still visible).

IMG_0049

Fieldwork in Dana Brown Woods. Olivia makes friends with a hog peanut (Amphicarpaea bracteata).

Just from field observations, we could see noticeable differences in the environment and plant community composition across the woodland.  Higher slopes were rockier, covered in old juniper stumps, and rich in sunflowers, whereas the lower regions near the Meramec River floodplain had deeper soil and more mesic plant species, like spicebush.

Data analysis confirmed that environmental gradients moderated plant community change over time. Higher, rockier areas experienced greater plant species turnover and greater increases species richness and abundance from 2001-2012, whereas shaded valleys changed relatively little.

DataPlot

Plant composition change from 2001-2012 increased with elevation, particularly during spring surveys. BC = Bray-Curtis dissimilarity, which measures the difference in plant species composition between a plot in 2001 and itself in 2012. Juniper, red oak, and white oak were subjectively determined habitat classifications at the outset of the study.

Our observations were likely driven by differential fire behavior across the woodland. Historically, fires were a frequent disturbance in the Ozark foothills. Four prescribed fires from 2001-2012 probably had larger impacts on the drier upland areas than in the wet lowlands, which would not have burned as well.

Quantifying how ecological restoration practices, like prescribed fire, vary across environmental gradients is important for land management planning, especially in the Ozark foothills where the landscape is so heterogeneous.

Poster

Leighton stood by while Olivia presented her research to the public at Sensational Summer Nights.

South Africa 2. Toward a Restoration Culture? Good news from the Karoo

In this 4th post from southern Africa, James and Thibaud Aronson report on a pioneering, science-based restoration project, the associated private restoration company, and also a nature reserve, all founded by one pair of scientists in Prince Albert, Western Cape province, South Africa.

Last October, posting from SW Australia, we reported on Gondwana Link and some of the activities of the Australasia chapter of SER. These are just two of the thousands of independent non-governmental groups of people working for joint environmental and social change around the world, as celebrated in Blessed Unrest, Paul Hawken’s 2007 best-selling book dedicated to the “unnamed movement” to reimagine our relationship to the environment and one another. After a year and a half researching our book on arid and semi-arid land trees, and ecological restoration projects and programs in the world’s drylands, we still like our name for that “unnamed movement” Hawken referred to, namely a restoration culture for the 21st century.

Opportunities for grassroots or combined bottom-up – top-down efforts and synergies abound in South Africa, with its outstanding research, technology, and capacity-building from academics, think tanks, not-for-profit organizations, and small companies offering restoration services and counsel. In our last post, we described a few Working for Wetlands programs and the participation of SAN Parks (the body that governs South African national parks) developing new ways to restore natural capital and social capital at the same time. Here we move to the vast central drylands of southern Africa, known very broadly as the Karoo.

As compared to other inland arid regions, landscape complexity here is enormous and, remarkably, ecotones, a.k.a. frontier zones are largely visible, if not intact.

photo 1

A klipspringer (Oreotragus oreotragus) in the Swartberg, near Prince Albert. This small antelope, which occurs throughout much of sub-Saharan Africa, is unusual in that it walks on the tips of its hooves, an adaptation to its rocky habitat.

This huge inland semi-desert has at least four sub-regions, and borders to the southeast an archipelago of more than 100 recognized types of subtropical thicket, a plant formation forming a key transition zone, in ecological and evolutionary terms, intermediate between forest and savanna. According to plant ecologist Prof. Sue Milton and ornithologist Dr. Richard Dean,  the archeological and historical evidence indicate that the Karoo has been largely treeless for millennia. Trees are mostly prevented from growing in the Karoo, not only by the aridity (<200 mm precip./year), but also by shallow soils and cold winter temperatures. The Karoo was prehistorically grazed by nomadic ungulates that were hunted by hunter-gathers (San or Bushmen) and by transhumant pastoralists – the Khoe-khoe. Yet, a huge change came about when European colonization in the 18th century brought wire fencing, deep drilling and wind pumps for extracting underground water. As Sue and Richard put it, “combined with a large demand for wool in Europe, this led to a boom in sheep farming and the development of rural villages, mostly dependent on ground-water.”

 

Map

Southern African biomes, highlighting the large extent of the Karoo (yellow & brown), and the two sites we visited: Prince Albert and the Plains of Camdeboo. Modified from: http://www.plantzafrica.com/vegetation/vegimages/biomes800.jpg 

We traveled to Prince Albert, a small town in the Karoo, where we met up with our old friends and colleagues Sue Milton and Richard Dean, who are the co-owners of Renu-Karoo Veld Restoration and founders of the Wolwekraal Conservation and Research Organization, a unique research site Sue and Richard acquired in 2007, very near the edge of this isolated town. After nearly 40 years of hard work as international researchers and teachers, Sue and Richard decided to focus their considerable energy for the remainder of their careers to their town, and a community-based restoration and revitalization program for the Karoo. Unlike many NGOs in the “restoration movement” theirs is firmly grounded in science. Prior to launching Renu-Karoo, when they first moved to Price Albert, they continued teaching part-time in Cape Town – a full day’s drive away, and ran the Tierberg Karoo Research Station, a long-term ecological research site nearby, for many years. They have also written or edited the major ecological textbooks on the Karoo, both for basic researchers and managers. And indeed, it is a complex area in need of serious restoration work.

The plant nursery is a key component for all of Renu-Karoo’s activities, producing indigenous Karoo plants and plugs for landscaping and restoration. Availability of indigenous plants in the village has also gradually led to increased popularity of water-wise gardening and to an awareness of local plant diversity.

photo 2

Sue Milton and Richard Dean surrounded by native and ornamental plants at the Renu-Karoo nursery.

photo 3

One of the nursery’s 10 employees beginning the day with a round of watering.

As Sue and Richard explain:

“……the vast plains of the Karoo, the wooded drainage lines, the ancient gnarled trees of the dunes and mountains, and the elusive wildlife have been damaged by poor agricultural practices. The area is also currently threatened by development of solar and wind energy generation facilities, and uranium and gas mines that could convert the quiet Karoo into the ‘power factory’ of South Africa. A combination of conservation, education, and continuous active rehabilitation will be needed to enable future generations of people to benefit economically as well as recreationally and scientifically from this rocky and glorious desert landscape.”

When Sue and Richard established Renu-Karoo a decade ago, their goal was to grow and supply Karoo shrub and grass seeds and to provide consulting services on how to re-establish or “repair” Karoo vegetation. Through trial and error, research by students and interns, collaboration with other companies and not-for-profit organizations, and follow-up surveys of restoration and rehabilitation projects, they have produced valuable knowledge, made available both informally and in scientific publications. Additional services, such as contract growing of plugs and plants of never-before propagated veld (the South African name for the sparsely vegetated landscapes typical of the Karoo) plants have added to the interest and capabilities of the business. They also provide free environmental classes and natural history talks and walks to school children and adults. They are truly global citizens working locally to build a Restoration culture in their home, the Karoo.

As part of their work to advance the movement, and raise the bar in restoration and management work, Sue and Richard’s consulting work takes them to businesses and private farms throughout the Karoo. From Prince Albert, we traveled north- east, to visit one such place, the Plains of Camdeboo Nature Reserve, a privately-owned property on the edge of the Karoo.

photo 4

A male vervet monkey (Chlorocebus pygerythrus) feeding in an Acacia, at Camdeboo National Park.

This nearly 9000-ha property once encompassed three game farms, which were severely overgrazed for a century, if not more. The properties were acquired by Vincent Mai, a South African who lives and works in New York City, and his wife Anne. They wanted to help preserve a piece of the Karoo where Vincent had grown up.

As it was clear that overgrazing in the past had seriously damaged the land, a South African conservation organization, the Wilderness Foundation, was invited to help. For the past six years, this foundation has been carrying out restoration work on the reserve. Their main focus is on eroded and impoverished soils, and they have undertaken a range of approaches, from grazing native Zulu cattle, to using agave stems and hay to block erosion gullies. A number of mammal species were also reintroduced. Angus Tanner, the indefatigable manager, showed us the range of their work on the reserve. Money and manpower is limited, and there are still many obstacles, but they are making great strides. They rely on Renu-Karoo for advice and seeds and technical advice. They are also reaching out to cooperate with the nearby township and their neighbors. Stitch by stitch, and farm by farm, the restoration culture is spreading in the Karoo.

photo 5

Traditional Zulu cattle in the Plains of Camdeboo Nature Reserve. They both break up compacted soil and fertilize it as the managers move them around the property.

photo 6

Two adjacent erosion gullies at the Plains of Camdeboo. The one on the right was plugged with a fence gabion and agave stems, in order to slow water flow and trap sediments. The gully on the left was not treated. A year later the difference between the two speaks for itself.

Seed Banking for Conservation and Restoration

Meg Engelhardt is Missouri Botanical Garden’s Seed Bank Manager. She describes her ex situ conservation program and its applications for ecological restoration.

Seeds have been stored for food since the dawn of agriculture, but in recent decades seed banks have become an increasingly relied upon tool for plant conservation. Ideally we would conserve all plants in their natural habitats, or in situ. After all, when plant populations remain intact so do the relationships with other organisms in their ecosystems. Intact plant populations also maintain gene flow within the species, helping populations continually adapt to their surrounding environments. Unfortunately, it is not always possible to maintain wild plant populations. Even when resources are available, maintaining natural plant populations may be impossible due to habitat fragmentation or destruction, range shifts due to climate change, pollinator loss, or any list of known or unknown factors resulting in population decline. This is where seed banking, or ex situ conservation, may play a supporting role.

FranklinCountySeedCollection

Collecting seeds from a dolomite glade in Franklin County, Missouri

Seed banks are long term storage facilities designed to keep seed viable for years and even decades. Those seeds can then be used for research, restoration, reintroduction, or education.

Maybe you have heard of the Svalbard “doomsday” Seed Vault, where seeds of more than 4000 plant species are stored deep below the permafrost near the north pole. Or perhaps the Millennium Seed Bank, which holds 13% of the world’s wild plant species and continues to collect the world’s threatened flora. Here in the United States we have the Native Plant Germplasm System, a network of 20 storage facilities across the country that store over 15,000 species, with a focus on agriculturally important species. On a more local scale, many small seed banks are used to conserve regionally important, threatened species.

NationalCenterGeneticResourcesPres

Inside a very large freezer at the National Center for Genetic Resources Preservation in Ft. Collins, Colorado

The Missouri Botanical Garden has been seed banking for over thirty years. In 1984 the Center for Plant Conservation (CPC) was founded with Missouri Botanical Garden as a founding member. CPC is a network of 40 botanical institutions focused on ex situ conservation of rare plant material while also ensuring material is available for restoration and recovery efforts. Our CPC collection is currently maintained by staff who are actively seed banking, researching, and restoring populations of extremely rare native plants throughout southeastern US (Solidago ouachitensis, for example).

Additionally, seed collecting and short term seed storage has been going on for at least 25 years at Missouri Botanical Garden’s Shaw Nature Reserve. Horticulture staff at the Reserve are focused on local ecotype native plant horticulture and have been collecting seed from regional wild sources for use in small scale greenhouse propagation, use in the Whitmire Wildflower Garden, restoration projects throughout the Reserve, and various other partnerships that encourage native plant horticulture.

SNRSeedCloset

The Shaw Nature Reserve “seed closet” currently houses almost 500 different taxa ‒ most of which are local wild source (i.e., seed collected from plants growing in the wild) or second generation seeds (i.e., the first descendants of plants growing in the wild).

In 2013 the Missouri Botanical Garden Seed Bank was created with two main goals. First to advance seed banking at an institutional level by providing support and facilities. A new seed lab space was created at Shaw Nature Reserve which includes lab benches and space for processing collected seed and cleaning for storage as well as a refrigerator and freezer storage space. The second goal is to collect and store samples of Missouri’s entire flora, which includes roughly 2,055 taxa. Continually collecting and storing samples of all local species will ensure long term genetic conservation that can be made available for research, restoration, and recovery should the need arise.

MOEveningPrimrose

Missouri Evening Primrose, Oenothera macrocarpa

Fig Stakes: Shoreline Restoration for a Costa más Rica

Andres Santana is the graduate program coordinator at the Organization for Tropical Studies. During a recent fieldtrip in southern Costa Rica, he and CCSD restoration ecologist Leighton Reid compared notes on using fig stakes for ecological restoration.

Tropical beaches are many things to many people. To plants, beaches are hot, sandy, and salty – complicating their restoration.

Costa Rica has 1228 km (763 mi) of coast line – including 1016 km on the Pacific side and 212 km on the Caribbean. Along Costa Rica’s northern Pacific coast, the beach forms the natural edge of the dry forest. Farther south the adjacent forest is more humid. Giant trees, 40 m or more in height, grow right up to the high tide mark, particularly along the Caribbean.

But as with so many tropical ecosystems, Costa Rica’s coastal forests have been subject to human impacts. Many shoreline forests were cleared for cattle ranching, and exotic grasses were introduced as forage. Some of these grasses are fierce competitors and prevent tree seedlings from establishing, even long after the pastures have been abandoned.

Playa Hermosa Antes y Despues

Playa Hermosa, before (left) and after (right) planting 2-m long cuttings of a coastal fig species (Ficus goldmannii).

In 2009, a small non-profit organization, Costas Verdes, was formed to restore coastal forests along degraded shorelines, particularly wildlife refuges. The restoration work was initially challenging; tree seedlings were hard to establish along the coast because of the harsh environment – high temperatures and salinity and lack of freshwater were among the most significant obstacles. Not to mention the invasive cattle forage grasses.

OLYMPUS DIGITAL CAMERA

Coastal restoration at Playa Hermosa

Playa Hermosa, a surfing destination on the Central Pacific coast, was among the most heavily deforested project sites. This area, part of a wetland and river estuary, was declared a national wildlife refuge in 1998. By 2009, very little forest had naturally regenerated. This led Costas Verdes to implement a restoration project at this beach. Planting plots were established where invasive grass was removed. In other areas, grasses left intact, as a comparison. It quickly became evident that tree seedlings were outcompeted by the grass. Those in the cleared plots grew better, but they still faced the other coastal habitat challenges.

Some native trees are resistant to hot substrates and high salinity, but these species were not available in tree nurseries, most of which focused on ornamental species. This meant that seedlings needed to come from locally collected and germinated seeds. We realized that this would take time to get going. Tree seedlings under 50 cm rarely survive, even if they have the proper coastal adaptations.

To accelerate the restoration, we decided to use tree cuttings rather than growing seedlings from seed. A colleague suggested Ficus goldmannii as a candidate species, so in 2011 we conducted a planting trial. We planted 225 2-m long cuttings. Of these, 195 (87%) survived their first year. By the second year all 195 survivors had become established and were quickly providing canopy cover and lowering the temperature of the sand.

Ficus

An established fig stake with a dense canopy. Note the weak, patchy grass below it.

Once fig stakes created some canopy cover, we brought in other tree species – mostly from the coastal tree nursery that we created. Shade from the fig canopy also began to inhibit the invasive grasses, which require high sunlight to photosynthesize efficiently. Reduced competition with these grasses allowed other tree seedling species to survive.

In this instance Ficus cuttings turned out to be useful in promoting restoration. We have since used cuttings for other plots with similar success.

OLYMPUS DIGITAL CAMERA

Coastal trees and shrubs growing below established fig cuttings at Playa Hermosa.

South Africa 1. Restoring natural and social capital in Namaqualand

James and Thibaud Aronson post the third of four photo essays on their recent field trip to Namibia and South Africa.

As soon as we crossed over the border from southern Namibia into northwestern South Africa, it was clear that we were looking at a whole different story. We were now in the driest part of South Africa and one of the most sparsely populated. Also, Namaqualand – a winter-rainfall desert of ca. 50,000 km2 – is one of the biodiversity hotspots of the world. The area is well known to tourists for the few weeks in August-September (the southern winter), when hundreds of plant species, benefiting from the winter rains, put on an incredible floral display and tapestry of textures and colors, down below your ankles.

DSC08644 pse

A rich community of toe-high succulents endemic to saline quartz patches . This photo was taken at Douse The Glim, not far south of Garies in southern Namaqualand. Many endemics of the Mesembs (Mesembryanthemaceae) occur here, including the sunken “Silver skin”, Argyroderma delaetii,  Cephalophyllum spissum, and “Redbeads”, Sarcocornia xerophila, a cousin of the cosmopolitan Salicornias. Identification of plants: Sue Milton and Richard Cowling, both of whom we will meet in the next blog post.

 

 

09_Argyroderma delaetii 0048 (1)

Argyroderma delaetii, a dwarf, sunken ‘silver skin’, of a genus restricted to the Western Cape, South Africa, in the Knersvlakte Nature Reserve . This photo was taken by Sue Milton in 2014, a much wetter year  than 2016.

All in all, apart from natural history buffs, botanists, and conservationists, not much attention is paid to this poor, rural area. In a nutshell, the rapidly exploitable resources that could be had – copper, timber, and the like – are now long gone. What is left is – to speak bluntly – a lot of poverty and a lot of land degradation. And a lot of biodiversity: indeed the Succulent Karoo region of Namaqualand and southern Namibia is one of the biodiversity hotspots of the world.

We met with some of the people making a difference there, working with South Africa’s most iconic environmental program, the Working for-family of government-funded programs, working together to restore natural capital and social capital at the same time.

DSC08525

Sheep grazing on  abandoned crop land in Namaqualand, near Leliefontein.

The Western Cape, South Africa has had a tradition of rather damaging sheep farming for centuries. But the country as a whole has also had a proud tradition of nature conservation for over a century, which is a lot more than most countries can boast.

However, what is  even rarer is that ecological restoration has been part of the national vocabulary for a generation. A game-changing initiative that moved the country to the next level was a government program launched in 1995, called Working for Water, or WfW.

South Africa was faced with two metaphorical birds. On the one hand, approximately half of its population lived (and unfortunately still does) in poverty. On the other, several invasive non-native tree species had taken over many of the country’s waterways, outcompeting native species, choking river beds, and draining the water tables.

Working for Water was the stone. Every year it hires some of the country’s poorest people –  38,000 in 2015 –  in rural areas in all nine provinces and employs them to remove those noxious woody species. Since its inception, the program has spent hundreds of millions of dollars and provided desirable jobs near home each year. The benefits to people are in fact multiple. Workers are provided with both an income and on-the-job training and capacity-building, with some going on to start their own companies, providing ecological restoration services to private landowners. They also acquire an esprit de corps  and pride in their achievements.

With the same ‘stone’, over 2 million hectares, mostly along water courses, have been cleared of invasive trees and water supply has been notably increased for the associated communities. Finally, the large amounts of timber and vegetable biomass harvested from the invasive trees are used to produce eco-furniture, which is then sold to help finance the program. Research is under way to find methods for producing biofuel from the woody weeds as well as to improve the ecological impact of the effort.

DSC08616

The small town of Garies, southern Namaqualand. The riverbed is completely dry, but there is enough moisture in the soil to support what may look like natural riparian vegetation. In fact, not a single tree is native. Instead they are Mesquites (Prosopis hybrids) from South America, Salt cedars (Tamarix hybrids), and Australian Wattles (Acacia karroo,  A. cyclops).

DSC08569

The Australian wattle (Acacia cyclops), one of the worst invasive trees in various habitat types in South Africa.

WfW now oversees over 300 projects across South Africa, and its success has led to the establishment by successive government administrations of several other programs, such as Working on Fire, Working for Wetlands, and Working for Woodlands. The goals are ambitious and together this ‘family’ of Working for- programs exemplifies the emerging understanding that ecological restoration can be a bridge-builder between long-term conservation efforts, and sustainable socio-economic development goals. At a time when protected areas are menaced worldwide by dubious government cop-outs on protected areas, South Africa is a refreshing exception that deserves praise and celebration.

Thanks to introductions set up by our friend Dr. Christo Marais, the number 2 man of WfW, we had a chance to talk to Ronnie Newman, Amanda Bourne, and Halycone Muller from Conservation South Africa (CSA), who work in Namaqualand on restoration projects, in close liaison with SAN Parks (the body that governs South African national parks), and through financing of Working for Wetlands.

DSC08175

From left to right, Amanda Bourne, Ronnie Newman, and Halcyone Muller at CSA offices in Springbok.

SAN Parks and CSA use funding from a new programme under WFW called Land User Incentive Programme, to hire people to restore degraded rangelands.  CSA and SAN Parks are thus implementing agents for Working for Wetlands in this arrangement, something new in the history of the Working for- programs. The focus of this trio here in Namaqualand is to repair erosion gullies, called “dongas” in southern Africa. These are very often a result of over-stocking and overgrazing by domestic livestock and get continually worse if left unattended. Thanks to this government-funded effort,  workers build beautiful gabions and other structures to slow water flowing downhill, catch sediments and eventually fill the gullies. Most of the gabions are made with metal baskets, or simply dry stones carefully assembled by skilled workers to make low but sturdy walls. However, in some cases, larger gabions are made out of concrete. As Amanda Bourne put it,  “this is about supporting the people who live and work on the land to restore and better manage it.  They are paid at a supplementary rate to undertake restoration on their own land, which will directly benefit their other (mostly agricultural but not only) activities.”

DSC08309

Working for Wetlands workers building a series of stone retaining walls, near Kamieskroon. In small rivulets like this one the metal baskets of typical gabions are not easy to use and are not deemed cost-effective.

A week later, in Cape Town, we met up with Christo Marais, and with Sarah Frazee, the head of CSA. She told us that they aim at working at critical spots upstream of water points of importance to local communities whose livelihoods are largely dependent on sheep grazing. CSA also provides veterinary services at no cost to participating farmers, and tries to persuade them to reduce their herds and flocks to avoid over-stocking, especially in drought years like the current one. As Sarah put it, 80% of the biodiversity in Namaqualand is associated with wetlands, which makes focusing on their restoration important from a conservation perspective. But, as more broadly throughout South Africa, public-private efforts like this one can effectively address biodiversity, water supply, land erosion, as well as poverty and related social issues at the same time.

From a classical economics perspective, however, ecological restoration work in arid lands is slow, and often hard to justify, since the value of the land for production purposes is so low. However, not just here in the Western Cape, but throughout South Africa, the multiple goals of the Working for- program are being pushed forward and steadily refined.

There has been frequent criticism of the programs and not without cause. In particular, monitoring has not been implemented as well as could have been hoped, though the program has continually improved since its inception, both scientifically and in terms of its impact on ecosystems and people. It will be a long battle to achieve all of its goals, but despite its flaws, it remains one of the absolute best examples worldwide of programs that combine restoration of social and natural capital.

DSC08453

Six months after the building of the stone walls near Lileifontein, complemented by brushpacking to help build up organic matter, things are looking pretty good.

We close with a mention of the fabled triple bottom line – the holy grail of progressive governments. How to achieve social, ecological, and economic benefits with a single program? Next steps in improving the work of the Working for- programs, according to  Christo Marais, should include: 1) still greater investments in education, capacity-building and outreach to bring all of South Africa’s society on board with the restoration movement, and 2) galvanizing private investment in restoration. The introduction of implementing agencies like SAN Parks and CSA should help with both.

In our next blogpost, we will report on what some private landowners and three wonderful NGOs, including RENU KARROO and F.O.S.T.E.R. are doing in the Nama Karroo and Thickets biomes.

Namib 2: Large wild animals, fences and farming (with good news about education)

James and Thibaud Aronson post the second of four blogposts on their recent field trip to Namibia and South Africa.

Africa is famous for its megafauna. Most foreign visitors, who only ever see them on safaris inside protected areas, may think that Africa has managed something every other continent has failed at: a harmonious relationship between people and entire trophic chains including large animals. In fact, many if not most interactions between humans and large animals in Africa, just as elsewhere, are conflictual and complex. Nothing illustrates the problem better than fences.

A legacy of European agricultural practices, long fences have become ubiquitous in Africa. They primarily serve to delineate property, control the movements of livestock, and in some cases limit the spread of epidemic diseases such as foot-and-mouth disease and bovine TB, and their spread to and from wild animals such a wildebeest and lions.

DSC07079

A typical small livestock herd in the Pro-Namib.

There are also the other kind of fences, the ones around protected areas, which often serve as effective protection for wildlife.  However, there is no doubt that livestock and veterinary fences have had and still have severe impacts on wild animal populations.

In particular, large mammals tend to range widely in search of food or water. Fences severely restrict their movements, with dramatic effects on populations in drought years. And mammals aren’t the only ones affected: large birds such as bustards suffer lethal collisions with power lines and fences, and tortoises are sometimes killed by electric fences.

IMGP7936

The amazingly camouflaged Rüppell’s bustard (Eupodotis rueppellii), which is endemic to the Namib. Like other members of the bustard family, it occasionally collides with fences.

In Windhoek, we met with Dr. Chris Brown, chairperson of the Greater Fish River Canyon Landscape (GFRCL), a mosaic of diverse properties, from private reserves to working cattle farms united in an association, whose working motto is “What can we do better together?” It is one of five such associations in Namibia today that are part of the NAM-PLACE project, started by the Ministry of Environment and Tourism, and now supported by the United Nations Development Program.

Dr. Brown is also a director in a Namibian company, Gondwana Collection.  Chris told us “We have a triple bottom line approach to business, with both environment and social investment playing central roles.” The strategy is to buy land in marginal, overworked farming areas, “re-wild it” by taking off the livestock and taking down the fences, and then reintroduce indigenous mammals and reinforce populations that have dwindled. Next, they build lodges to attract medium- and high-end tourists interested in seeing wild nature. Their largest property to date – among 14 throughout the country – is a private, protected area of 130,000 ha on the east side of the Fish River Canyon, which is the largest canyon in Africa.

DSC07581 canyon

The Fish River canyon. The river only flows like this after heavy rains.

DSC07314

An Aloe dichotoma (Kokerboom in Afrikaans, or Quiver tree), one of the few trees in the southern Namib. In the past, Bushmen fashioned quivers for their arrows from the soft branches, hence the tree’s common name.

We were fortunate enough to spend two nights at one GFRCL partner’s lodge, a 40,000 ha reserve on the western rim of the canyon. This remarkable landscape has been inhabited by humans for millennia, as illustrated by the tools and rock engravings still found throughout, but ill-adapted sheep farming, along with the eradication of many species by white settlers over the last 150 years, had a massive impact on the landscape, which is only now beginning to heal.

DSC07890

‘Pecked’ rock engraving and associated stone tools near the Fish River Lodge.

Through Chris Brown, we also met Nils Odendaal, CEO of the NamibRand Nature Reserve, which is part of the Greater Sossusvlei-Namib Landscape, another of the five current NAM-PLACE projects. Nils was upbeat, citing serious prospects for addressing conservation and human well-being issues simultaneously. This group focuses on the Pro-Namib, the transition zone between the arid Namib and the more mesic escarpments to the East. Much of the land there was given to white South Africans after World War II as a reward for fighting in the war and for voting for the South African National Party. However, after two generations of unsustainable sheep grazing on these already nutrient- and moisture-poor lands, the area became known as the ‘bankruptcy belt’, when farms began to fail one after the other in the 1970s and 1980s. In 1982, a Namibian businessman bought up a large tract of land and made it into a nature reserve. From this initiative, NamibRand has expanded and now includes 202,000 ha, comprising several properties linked by a common constitution that stipulates, among other things, the removal of internal fences. High-quality, low-impact tourism at ‘ecolodges’ built on concessions inside the reserve provide part of the funds for its conservation activities and “sustainable utilization of its resources”.

DSC07045

A typical NamibRand landscape. Like most of the country, it has suffered a 4-year drought, which may now finally be breaking.

During our journey, we were able to stay one night at the flagship ecolodge, whose revenues help support an environmental education and sustainable living center called NaDeet (Namib Desert Environmental Education Trust), which aims to contribute to the hugely important task of teaching and capacity-building.

The pro-Namib is of critical importance for animals moving out of the Namib proper during droughts. Therefore the reserve is working on an agreement to take down part of its fences on its border with the massive Namib-Naukluft National Park, allowing mammals such as gemsbok to reach the highlands in times of drought.

IMGP8122

The gemsbok (Oryx gazella), is perhaps the most characteristic large mammal of the southern Namib, and one of the most supremely adapted ungulates to desert living. Despite the drought, about 2000 of them thrive on the reserve.

In sum, these are two remarkable initiatives in two of the driest parts of Namibia. Both focus on large wild animals and high-end tourism. Neither has any direct support from the government, and they both are in difficult, arid lands. On the other hand, the very low human populations limit the potential for social conflict so common around conservation areas elsewhere in Africa.

Unquestionably, one major priority for Namibia is more and better environmental education, in classrooms and, above all, outdoors. Both GFRCL and NamibRand undertake detailed monitoring of the wild animals for which they are the stewards and defenders. They are also stellar communicators for wildlife and nature conservation through all their activities and presence on the internet. But what about training in the science and practice of ecological restoration?

As mentioned in our previous post, we were able to visit the Gobabeb Research and Training Center, in the central Namib, as we noted in our previous post. This Center has been operating continuously for over 50 years, and has produced a large body of research on many facets of the Namib, including hydrology, geology, paleohistory and of course ecology. Since 2012, it houses the NEMRU (Namib Ecological Restoration and Monitoring Unit), headed by Dr. Theo Wassenaar. This group has been doing research on restoration of arid lands in the country and training Namibian students, and lobbying for more research and training in restoration ecology at various universities in the country as well. The Gobabeb Training and Research Internship Programme (GTRIP) a five-month field course now in its seventh year. It is intended for young Namibian scientists interested in the fields of conservation, land and ecosystem management and ecological restoration. Under the guidance of researchers and staff, students have the opportunity to design and implement independent research projects that should “contribute to Namibia’s ability to manage and restore degraded ecosystems”. Posts from the GTRIP 2016 trainees are well worth looking at. Hopefully, this generation of Namibians will be the one to make the difference.

One obvious source of inspiration should be its neighbor, South Africa, which has been doing world-class restoration for over two decades. We spent three weeks on the other side of the border, meeting some of the key people and visiting cutting-edge restoration projects, as we’ll discuss and illustrate in our next two posts.

GTRIP2016

This year’s GTRIP students at the Gobabeb Research and Training Centre : Mathias Mwaetako, Fransiska Otto, Ailla-Tessa Iiyambula, and Kauna Kapitango, taken on the dunes south of the Kuiseb River. 15 February, 2016. Photo: Meg Schmitt.

Notes from the Namib 1. An ancient desert in transition

James and Thibaud Aronson post the first of four blogposts on their recent trip to Namibia and South Africa.

For the last trip for our book project on desert trees and restoration in arid regions, we started in Namibia, the only country in the world named after its desert! The Namib desert covers the entire coast of Namibia; it is more than 1500 km long and up to 200 km wide and extends north into Angola and south to South Africa. It is often said to be the oldest desert of the world, estimated by some to have continuously experienced arid or semi-arid conditions for the last 55- 80 million years. Certainly there is good evidence that it has been dry since the mid Miocene (11-16 million years ago). (The Atacama desert, from which we wrote last October, is also very old.  For comparison, the Sahara is less than than 7 million years old, and has experienced several much wetter periods since, some as recent as 10,000 years ago.

DSC06452

Some of the highest dunes in Africa are found at Sossusvlei, in central Namibia. The highest one, ‘Big Daddy’, is just a bit taller than the Eiffel Tower, reaching 325 meters.

The Namib is an exceptionally dry part of the Earth, with the coastal sections hardly receiving any rainfall at all. It does however receive coastal fogs, often for more than 100 days per year, which provide a significant source of moisture. Furthermore, the desert is traversed by 12 ephemeral rivers, which form striking linear oases, with lush riparian canopies. These canopies are dominated in most cases by very large Faidherbia albida trees, that remarkable tree known, among many other names, as Ana tree in southern Africa, and Gao in the Sahel.

DSC06116

Ana trees along the bed of the ephemeral Kuiseb river, central Namibia.

This tree – which until recently was classified as an Acacia, often shows a very unusual ‘reverse’ phenology compared to most woody plants in seasonally dry areas, as it keeps its leaves during the dry season and drops them in the wet season, when all the other deciduous trees and shrubs are growing new ones. Furthermore, its leaves as well as its pods – which it produces in copious numbers – are highly palatable to animals and high in protein. It is therefore an essential resource both for wild browsers and livestock. And there’s the shade it provides as well, which is a hugely important feature in all desert landscapes. In fact, Ana is one of the most important trees for herders throughout the continent, and is one of the few trees they deem more useful to them standing than cut down. As for the wildlife, these riparian canopies and the food they provide are very important. In fact, they enable some large mammal species, such as the kudu (Tragelaphus strepsiceros), and even rhinoceros and giraffe in the northern Namib, to range into a desert otherwise too harsh to support them.

IMGP7564

A springbok (Antidorcas marsupialis) in the shade of giant Ana trees on the banks of the Kuiseb River. This animal is well-known for its pronking behavior: individuals like this can jump up to two meters straight into the air as a display of fitness to discourage predators from giving chase.

Unusual among deserts, and likely because of its age, the Namib is home to a large number of endemic animal species, mainly beetles, reptiles – such as the Wedge-snouted Sand Lizard (Meroles cuneirostris), and birds, including the Dune Lark (Calendulauda erythrochlamys), Namibia’s only endemic bird.

IMGP7597 Meroles cuneirostris

The Wedge-snouted Sand Lizard. The shape of its nose is not just a funny accident of evolution: it actually allows this lizard to ‘dive’ into the sand to escape its predators. This lizard is also known to perform a ‘thermal dance’, lifting one foot at a time, or lie on its stomach with all four feet in the air, to reduce its contact with the sand that can reach a scorching 70 degrees C (158 F)!

 

IMGP8093

A Dune Lark, in the Namib-Rand Nature Reserve, in the process of building its nest in a hummock of grass. Its name is misleading; this bird actually prefers to live in the swale of vegetated dunes where its cryptic coloring makes it seemingly vanish as soon as you blink.

However, the Namib’s most famous endemic is undoubtedly Namibia’s national plant, the bizarre Welwitschia mirabilis. This is the sole species of the one genus in the venerable – dare we say inimitable? – Welwitschiaceae. This ‘monster’ is the only living member of a lineage more than 100 million years old. At a distance in certain lights you’d think it’s a beached giant squid…. but in fact it’s an ‘underground tree that can live well over a thousand years. Welwitschia is a near-endemic in Namibia as it occurs in southern Angola as well, but its entire geographic range is limited to the Namib Desert.

DSC05788

Female adult Welwitschia in its habitat. Note how the ends of the leaves dry out over time.

According to Dr. Theo Wassenaar, researcher at the 54-year old Gobabeb Research and Training Centre, this remarkable plant survives for centuries in a hyper arid desert by finding pockets of slightly moist soil in rock fissures. Having excavated more than two dozen plants, and examined their root systems in detail, he says “essentially it appears as if they forage for water, using their roots as scouts and sending in the troops (fine roots) when they find a pocket of moisture. And the differences in moisture can be slight, a few percent at most.”

An additional anomaly is that, although it is very hard to tell at first glance, each plant only has two leaves, gradually torn to tatters by the desert winds and sun. These two gigantic leaves never stop growing during the tree’s lifetime. It also is under threat, sad to say, as we will describe briefly a bit later.

DSC05578

Adult male Welwitschia in flower.

We traveled through nearly half of Namibia, from Walvis Bay in the center of the country, south to the Orange River on the South African border. And it is a breath-taking drive, because of the geology of this truly ancient desert, and the fact that the area has low population density, and still reasonably healthy ecosystems (except for the livestock fences galore) and large amounts of wildlife.

This state of affairs partly traces back to an inspired Nature Conservation Ordinance promulgated by the government back in 1975, which gave landowners property rights over the game animals on their land, within certain enlightened limits. Before that date, all wild animals, and all profits derived from them, went back to the state. Transferring ownership and the associated profits – from game viewing, trophy-hunting, and meat – to the landowners changed their perspective of wild animals. No longer competitors and predators of their livestock, to be kept out or exterminated, wild mammals became a source of revenue to be ‘cultivated’ and protected. As a result, the populations of large mammal species have seen impressive increases in the country. However, in some cases, this commercial incentive has led to some serious mismanagement. Indeed, some landowners have taken the view there is no such thing as too much game, and some private game farms maintain populations at unsustainably high densities in relatively small areas. Ironically, this can lead to some of the worst cases of overgrazing in the country!

Overall, the good health and integrity of the country’s ecosystems is a fantastic asset, of tremendous value for the nation. And – on paper, at least – the situation is admirable, with nearly 20% of the country in protected areas; since 2011, the entire coastline is protected inside three national parks, something no other country in the world can boast.

Still, the Namib desert and its fauna and flora face various threats, with dams affecting the hydrology of several ephemeral rivers, and a powerful and growing mining sector. In particular, the Welwitschia plains, where the largest southern population occurs, sit on top of a large uranium deposit. Efforts have been made to preserve the Welwitschia populations, and so far only two mines have been operating. But a third is currently being developed, which will be one of the world’s largest, and several other mining licenses may well be awarded if the price of uranium goes up again.

However the relationship of mining to restoration, and the role of the mining sector, are complex here as everywhere. As Dr Gabi Schneider, of the Namibian Uranium Institute told us, uranium mining is very localised, and the mine ‘footprints’ therefore are limited. Mining companies in Namibia have contributed in no small way to advancing the technology and science of arid land rehabilitation in the Namib, and also to research. Among other things they co-fund the Namib Ecological Restoration and Monitoring Unit program at Gobabeb. Uranium activities are governed by a Strategic Environmental Management Plan as well.

Furthermore, feral horses from abandoned tourism initiatives also roam the desert and eat Welwitschia leaves much more aggressively than native browsers do. Theo Wassenaar is working on this, and negotiating with local communities; it is a slow process but the Ministry of Environment and Tourism is also now engaging rural communities on this issue.

Browsed_Welwitschia

Horse-browsed Welwitschia in Welwitschia wash, near Gobabeb. Photo: Meg Schmitt, Gobabeb Research and Training Centre.

Further south, near the South African border, under the coastal dunes and off-shore, is one of the largest diamond deposits in the world, which have been mined for over a century. While some laudable efforts are being made to restore mine sites on this harsh, windy coast, it is a very difficult task, in one of the driest regions of the world.

During our travels, we met some of the restoration and conservation pioneers in the country, who are taking these vital actions to the next level, and working on more intimately linking wildlife conservation, the policies of both mining and tourism sectors and, in general, environmental education and capacity building. In the next blog post, we will talk more of the prospects and constraint for these initiatives.