Green Again: Restoring rain forests in eastern Madagascar

Green Again Madagascar is a young non-profit aiming to reconnect rain forests in eastern Madagascar and collecting heaps of data in the process. Disclosure: Leighton Reid wrote this blog and is on Green Again’s board of directors.

Matt Hill is trying to restore a rainforest corridor across eastern Madagascar. His motivation is that Madagascar’s wet, eastern flank was once blanketed by a dark, rich forest festooned by bizarre plants and teeming with unique animals. No longer. Over the last 70 years humans cleared almost half of what was there in the 1950s – mostly for farming. Although the farming is often temporary, the forest rarely grows back. Weedy ferns and exotic trees find their way onto the abandoned farms and take hold – boxing out the Malagasy species.

Some tropical rain forests can recover swiftly on their own, but not these. Eastern Madagascar is a strong candidate for hands-on ecological restoration.

RevisedExpansionMap

Madagascar (left) and the region of eastern Madagascar where Green Again Madagascar operates (right). Dark green areas are intact rain forest. Colored ovals show the expanding project scope of Green Again over the past four years. Green Again hopes to one day reforest a longer corridor across the northeastern side of the island. Imagery is from Google Earth.

Melaleuca quinquenervia Analalava

In the landscape around Foulpointe, native forest was replaced by shifting agriculture, which was replaced by a forest of invasive Melaleuca quinquenervia, a tree native to Australia. Photo by L. Reid.

Matt is a middle-aged ex-pat and a self-described “quant”. His father was a math professor, and Matt followed in his footsteps, earning a degree in mathematics from the University of Chicago and subsequently a masters from UCLA. Before landing in Madagascar, Matt had a career on Wall Street analyzing large databases for Putnam. He retired early seeking a simpler and more natural lifestyle, which he found in abundance in rural northeastern Madagascar.

I first met Matt in 2015 at Parc Ivoloina – a zoo and forestry station near the port city of Toamasina. Clad in gym shorts and flip flops, Matt was buzzing between nursery beds shaded with bamboo slats and a laptop powered by a portable solar panel, where a local was entering data about tree survival and growth. Matt explained his tree planting system to me. At each stage, from seed to tree, he and his team measure plant performance – including survival, height, and diameter. Matt’s team uses these data to quickly adopt methods that work and discard methods that don’t.

As he explained his tree planting system to me, I was impressed by Matt’s attention to rigorous data collection – a preadaptation from his Wall Street career that serves him well in his new pursuit of tropical forest restoration.

MattQuant_Edit

Matt Hill (left) explains database management to a local community member.

Starting a forest restoration program in eastern Madagascar

Matt was introduced to forest restoration by accident when he was stranded for several days in Toamasina waiting for the wild, muddy road to Maroantsetra to become passable. He visited Parc Ivoloina on a whim and learned about a recent wildfire. A local man had been making charcoal when his fire got out of hand and burned his own farm and 20 acres of a nearby forest. The experience moved Matt to begin growing and planting native trees on the burned land. This effort congealed into an NGO called Green Again Madagascar.

From the start, Green Again has been a collaborative effort involving a team of local people. Jean François Solofo Niaina Fidy is the head forester at Parc Ivoloina and president of a nearby village association. He initially advised Matt on the project and helped build local support. Many community members joined the restoration effort – growing trees in the nursery and planting them in the burned area. It is a steep learning curve. Many local people have only a few years of school and may not have held a pencil for some time. Matt teaches them to use GPS units, record data on datasheets, and enter it into an Excel spreadsheet. When the data do not make sense, they return to the field to take repeated measurements.

The work is hard but good by local standards. Many locals make their living by breaking large boulders into gravel by hand, with a hammer. Others spend their days shoveling sand from the river into dugout canoes and paddling it to shore where it is picked up by road construction trucks. In contrast, locals who get involved in these forest restoration projects pick up transferable skills in horticulture, computing, and business management.

Coping with wildfire (and learning from it)

In early November 2016, Matt called me in a panic. There was a wildfire. His plantings had burnt to a crisp.

Fires are common in eastern Madagascar, but this was a tragedy. To make a bad situation worse, the plantings that burned were an experiment that Matt was doing for a master’s thesis at the University of Minnesota.

fire_03

A wildfire in 2016 that swept through a forest restoration site, destroying Matt’s master’s thesis experiment.

In the ashes of his ruined experiment, Matt found a few survivors. He discovered that some native trees are resistant to fire. These survivors may lose their leaves and stem to fire, but they can resprout from roots.

Importantly, Matt also learned that trees planted near the edge of plantings were more vulnerable to fire than trees planted in the center of a plantation. This is because the landscape outside of the tree plantations was more flammable than the trees inside the plantations. In particular, the thatch from a common fern (Dicranopteris linearis) would catch fire and burn for quite a long time.

Green Again’s recent projects have taken this new information on board. Now, new plantings are designed with the fire survivor species on the outside and the delicate species on the inside. Some new plantings are also more extensive, so that the edge-to-interior ratio is lower and less of the trees are placed in the riskiest spots.

For good measure, Matt’s team also includes some “vulnerable” tree plantings using the earlier techniques so that the next time a fire sweeps through one of the sites, Green Again will have tangible evidence about which strategy is the most fire-proof.

forest_06

A pristine rainforest in eastern Madagascar.

Green Again Madagascar has a small operating budget based on charitable donations and memberships. To learn more, visit the Green Again Madagascar website or write to Matt at GreenAgainMadagascar@gmail.com.

Photos: All photos are by Matt Hill unless otherwise noted.

 

Advertisements

What can bat poop tell us about past tropical landscapes?

Rachel Reid is a postdoctoral researcher at Washington University in St. Louis. She uses isotope chemistry to answer questions about ecology, geology, and conservation – including questions that can help build reference models for ecological restoration. Note: This blog is republished with permission from Amigos (No. 91 May 2019), the newsletter of Las Cruces Biological Station.

 Many people head to Costa Rica for spring break to see monkeys and sloths at Manuel Antonio National Park or to try their hand at surfing in the Pacific. While we did stop to gawk at the crocodiles that hang out under the bridge over the Tárcoles River with a busload of tourists, the goal of our trip diverged significantly from the spring break crowd – we were heading off the beaten path to southern Costa Rica to collect samples of modern and ancient bat guano (aka poop).

Bats sometimes visit the same caves over thousands of years, and the accumulated piles of guano offer a unique opportunity to study past environments. Just like a core of sediment from the bottom of a lake or the ocean, a core of bat guano collected from a cave contains useful information about the past, both recent and distant. The material at the bottom of the core is the oldest and that at the top is the youngest, so by sampling the length of a core, we can essentially take a short, stinky walk back in time.

We are interested in detecting changes in bat guano chemistry (particularly the carbon isotope values) through time as a way of evaluating what type of vegetation would have been on the landscape in the past. This works because information about the plants at the base of the food chain gets propagated up to the plant-eating insects and then to the insect-eating bats whose guano we’re sampling.

Bat Food Chain

Like other animals, bats and insects both gain carbon and nitrogen through the food they eat. Bats eat insects, which are in turn eating the local vegetation. Different types of plants have different carbon isotope values, such that most trees and shrubs (C3 plants) have much lower carbon isotope values than most grasses (C4 plants). Shifts in tropical bat guano carbon isotope values, therefore, are indicative of landscape-level changes in vegetation between more open, grassland plants and tropical forest.

How does bat poop inform conservation?

In the late 1940s, southern Costa Rica was nearly 100% forested. We know this from aerial photos – the earliest ones are from 1948. In later years, aerial photos show that most of that forest was cleared for coffee plantations; two thirds of it was cleared by 1980, for example.

This recent deforestation has motivated forest restoration efforts such as the creation of biological corridors and international scientific studies. Nonetheless, several studies (such as this and this) suggest that extinction rates in this region may be lower than would be predicted from recent habitat loss. One explanation for this could be that the regional flora and fauna evolved for several thousand years in a mixed forest and non-forest landscape managed by humans. By piecing together records of past vegetation from bat guano cores, we’ll be able to gain a better picture of what the landscape would have looked like in the past and potentially refine landscape-scale conservation and restoration targets.

For this first trip, our goals were to visit several caves to collect samples and to scout out future sampling opportunities. Southwestern Costa Rica has the highest concentration of karst caves in the country, so we were in the right place. In four days of fieldwork we visited three different caves (two of them twice!), collected 77 cm of core material, and took dozens of samples of modern bat poop.

At Bajo los Indios Cave, also known as Corredores, along the Rio Corredor, we ventured into a restricted, elevated chamber in hopes of finding deeper, more protected accumulations of guano. We were disappointed to find that even in this higher chamber, the cave was very wet and muddy and any significant guano accumulations appeared to have washed away. We collected a guano/mud core anyway and we’ll see what we can learn from it.

Bat Guano Team by JF

The bat guano team. From left to right: Leighton Reid & Christy Edwards (Missouri Botanical Garden), Rachel Reid & Alice Xu (Washington University in St. Louis), and Jeisson Figueroa (Organization for Tropical Studies). Photo by Jeisson Figueroa.

Taking a guano core by JF

Leighton Reid uses a peat corer to extract a sample of bat guano from a karst cave. Photo by Jeisson Figueroa.

One additional important piece to our project is to try to get a better idea of what modern insectivorous bats, such as the mesoamerican mustached bat (Pteronotus parnellii mesoamericanas), are eating. We’ll then use that information to better interpret our results back in time. We’re excited to start analyzing samples!

This pilot study was generously funded by grants from the Living Earth Collaborative and from the International Center for Energy, Environment and Sustainability.

How does fire affect ant-mediated seed dispersal?

Eva Colberg describes her ongoing research at Shaw Nature Reserve. She is a Ph.D. student in the Biology Department at the University of Missouri St. Louis.

In the late 1940s, Ohio-born entomologist Mary Talbot spent her days crouched in the woods of St. Charles, MO, tracking ant activity in painstaking detail through the seasons. Similarly, last summer I tried my hand at watching ants in the woodlands of Shaw Nature Reserve, with the addition of crumbled pecan shortbread cookies and the help of my field assistant, Dayane Reis. Foraging ants flocked to the buttery feast, the contrast of the crumbs’ sandy color against dark soil and leaf litter allowing us to easily follow the cookie thieves back to their nests.

EvaNHER20190301_Photo1

A plot of flagged ant nests (found by following cookie-bearing ants) in the Dana Brown Woods, one of the management units at Shaw Nature Reserve.

We watched at least seven different species of ants run off with the cookie crumbs, but I was most interested in the winnow ant (Aphaenogaster rudis). Reddish-brown, long-legged, and narrow-waisted due to a double-segmented petiole (the connection between the abdomen and thorax), the winnow ant worker is an elegant lady. She is also remarkably swift-footed and strong, adept at carrying chunks of pecan cookie or naturally occurring analogs.

EvaNHER20190301_Photo2

A winnow ant (Aphaenogaster rudis) worker, with the petiole and post-petiole that give the species its svelte waist. From her head to the end of her abdomen, this ant is about 4.5 mm long.

To an ant, a cookie more or less resembles an insect carcass, a staple of many ant diets. Chemically and nutritionally, the seeds of many of Missouri’s spring-flowering herbs also resemble a delicious dead insect (or cookie). From an ant’s point of view, this means food for larvae. From a seed’s point of view, this means dispersal. Hitchhiking to an ant’s nest gives the seed a new location to germinate and grow away from the parent plant, and potentially a multitude of other benefits such as escape from predation or better soil conditions. In any case, this is ant-mediated seed dispersal, or myrmecochory.

EvaNHER20190301_Photo3

A field ant (Formica subsericea) grabs a bloodroot (Sanguinaria canadensis) seed by its elaiosome, the oily, nutritious appendage that most resembles a dead insect and attracts ants.

In other parts of the world, benefits of myrmecochory include enhanced survival and germination after fire. In arid, fire-prone areas of both Australia and South Africa, ants bury seeds deep enough to buffer the intense heat of fire, but shallow enough that the heat weakens the seed coat and increases the odds of germination. Thus, the ants protect the seed from the flames while still providing exposure to a Goldilocks level of heat.

Just as in Australia and South Africa, fire is (or was, and with the help of land managers is once again becoming) also a frequent occurrence in Missouri. At Shaw Nature Reserve, managers use prescribed burns to restore an open structure to the reserve’s oak-hickory woodlands. But, is ant-mediated seed dispersal interacting with fire the same way here as in those other fire-adapted ecosystems?

This is a key question of my dissertation research at University of Missouri St. Louis. Using cookies to find winnow ant nests last summer helped me test methods and plan out my experiments for this coming year. Specifically, I will be tracking where the ants take their seeds, whether ants disperse seeds more or less in the year after a fire, and whether the presence and timing of surface fire affects the germination of the seeds after dispersal. Stay tuned!

You can keep up with Eva Colberg on Twitter (@ColbergEva) or by checking out her science communication initiative Science Distilled STL.

Virtual field trip to the Guajira desert and the Serranía de Macuira in northern Colombia

James and Thibaud Aronson describe the natural and cultural context of a little-known area of northern Colombia, home to the Wayuu people and a microcosm of arid lands worldwide.

Colombia is one of the world’s seventeen megadiverse countries.  In a few hours of travel, one can go from the sweltering Amazonian lowlands to the snow-capped peaks of the Andes. It even has a true desert, a small peninsula called la Guajira, shared with Venezuela, which constitutes the northernmost point of South America.

For most of the last 50 years, the Guajira was notoriously dangerous, principally because of drug trafficking, but things have improved in recent years. We traveled there last month, shortly after the first big rains the region had received in several years. ​ And we found that it’s a poignant example of the plight of drylands globally and their peoples.

Guajira02_26_2019_map

The Guajira peninsula, in northern Colombia, including the authors’ itinerary.

Our trip actually began in Panama, which was part of Colombia until 1903. While much smaller, Panama is also a country of contrasts. Much of the Pacific coast used to be covered in seasonally dry tropical forest, and some fragments persist today in and around Panama City itself, while the forests of the Caribbean slope, a mere 50 km away, are much wetter. A curious switch occurs near the Colombian border, where the wet forests then extend down the Pacific coast of Colombia and Ecuador – the famous Chocó-Darien rainforest, one of the wettest and most diverse tropical forests on Earth.

Meanwhile, the seasonally dry forests continue along the 1,000 km long Caribbean coast of Colombia and give way to semi-desert and then true desert (annual rainfall < 250 mm), lined by a coast with mangrove forests, and a series of lagoons and bays where flamingos and ibises add a shock of color.

IMGP2432

Mangroves in Bahia Hundita, Alta Guajira, showing desert woodland with tree cacti (Stenocereus griseus) and various legume trees growing on the sandstone bluffs in the background.

6Z1A5797

Roseate spoonbills, great egrets, and a white ibis sharing a coastal wetland near Uribia.

As if this wasn’t enough contrast, halfway along the Caribbean coast rises the Sierra Nevada de Santa Marta, Colombia’s tallest mountain range, reaching 5,700 meters (18,700 feet) above sea level at the highest peak. It takes only about two hours to drive from its foothills, where toucans and monkeys chatter in the majestic trees, to Riohacha, the gateway to the desert.

6Z1A3879

A brown-throated three-toed sloth (Bradypus variegatus) hanging by one arm in a Cecropia tree in Tayrona National Park, at the base of the Santa Marta mountains.

Alta Guajira’s desert trees and woodlands

The Alta Guajira is arid indeed, but it hosts trees, remarkable both in their exuberant diversity and their abundance, considering the high temperatures and meager rainfall. We saw what we consider true desert canopies, such as we have described in other posts. However, no desert flora exists in isolation, and indeed the kinship to the ecosystem type known as Seasonal Dry Tropical Forest (SDTF; see map above) seems to be strong.

The dominant trees of the Guajira are species of Prosopis, Caesalpinia, Vachellia (formerly part of Acacia s.l.), Parkinsonia and other legume genera, accompanied by Bursera, Capparis relatives, Bignoniaceae, and other species common in the dry forests of Central and South America, and 3 kinds of tree cacti (Stenocereus, Pilocereus, and Pereskia), growing close together, often covered in climbing vines. In particular, it was interesting to see bona fide desert woodlands dominated by two well-known legume trees, Prosopis juliflora and Vachellia farnesiana, which are widespread and often strongly invasive in other parts of the world, but not here! Fascinating biogeographical and ecological questions abound in this poorly explored region, many of which are relevant to conservation and restoration.

Regarding  landscape ecology in the region, the vegetation is curiously like a patchwork, alternating between dense desert woodlands, nearly pure tree cacti stands, sometimes with a dense grass cover, and sometimes not, and frequent saline flats where nothing grows. In our opinion, the human element, namely land and resource use history, is paramount to understanding what one sees when travelling here and trying to ‘read’ the landscapes.

IMGP1364

Mixed patch of tree cacti and spiny legume trees with a surprising amount of grass understory. Elsewhere under similar stands, for no clear reason, there is no grass cover at all.

IMGP2305

A track of the Alta Guajira, near Nazareth, at the base of the Macuira hills where the notorious Prosopis juliflora, known in Colombia as Trupillo, is so exuberant and long-lived it forms a natural tunnel above this track.

 

IMGP1037

Prosopis juliflora colonizes newly exposed beach dunes, in areas where the shoreline is receding. Here, at Camarones, it occurs alongside Calotropis procera, a woody weed of the Apocynaceae known in English as giant milkweed, and familiar throughout the Caribbean islands, the Middle East and drylands of Africa. It survives because of its toxic milky latex where most other plants get eaten out by livestock.

Other standouts are the beautiful Palo de Brasil, Haematoxylum brasiletto, with its unusual fluted trunks and Pereskia guamacho, an enigmatic ‘primitive’ tree cactus with true leaves and one of the most exquisite tasting fruits we know. This is one of the least well-known but most intriguing of all desert trees to our minds.

IMGP1656

Typical landscape of the northern Guajira desert woodlands, with an even-aged stand of one of the several neotropical legume trees known as Brazilwood: Haematoxylum brasiletto, or Palo de Brasil in Spanish.

Despite those common names, this species is in fact only found wild along Caribbean coastlines from Colombia and Venezeula, all the way north to both coasts of Mexico. The scientific name is thus a misnomer. The most famous Brazilwood tree is another legume, Paubrasilia echinata (= Caesalpinia echinata) that once grew abundantly along the Atlantic coast of Brazil, as a large tree with a massive trunk, reaching up to 15 meters tall. Today, it’s almost entirely gone in the wild, and mostly planted in gardens and along roadsides. It was prized for the bright red dye obtained from the resin that oozes from cut branches or trunks. The dye was widely used by textile weavers in the Americas and Europe in the 17th-19th centuries. The tree also provided the wood of choice for high quality bows for stringed instruments and was widely used for furniture making as well. So important was its economic value that the country was named after it, originally Terra do Brasil (Land of the Brazilwood), later shortened to Brazil. Recently it was designated as sole member of a new genus, as part of a comprehensive revision of the entire genus Caesalpinia, carried out by an international team of experts.

It’s curious that H. brasiletto bears the same common name as P. echinata, since the two trees are nothing alike, apart from their red sap and heartwood. Little literature exists for H. brasiletto, and we are embarking on some detective work to shed some light on this puzzle. We go into detail as these are both relatively fast-growing trees with great economic as well as ecological value. They would both be excellent candidates for inclusion in ecological restoration work and are both in dire need of conservation efforts.

Wayuu: Alta Guajira’s Indigenous People

This desert also hosts a fairly large human population. The Guajira is the home of the Wayuu, Colombia’s largest surviving indigenous group and, along with the Navajo, one of the last desert-dwelling peoples in the New World. These fiercely independent people, organized in 17 matrilineal clans, were never subjugated by the Spanish, and even today the Guajira region functions mostly in isolation from the rest of the country. As we were heading well off the beaten track, we needed a guide, a 4 x 4 jeep in good condition, and a skilled driver to navigate the meandering and unmarked desert paths.

Despite an ancient history of human presence, and some periods of intensive exploitation and intervention (such as a pearl harvesting boom that took place soon after European explorers arrived), the ecological condition of the region at the landscape scale is remarkably good. Indeed, apart from the salt works in the small town of Manaure, which produce two thirds of Colombia’s salt, and El Cerrejón, South America’s largest open-pit coal mine, in the south of the Guajira, there is no major industry.

IMGP2473

Typical traditional salt works at Manaure worked by hand by local men and women just as they have for generations.

And the isolated people who dwell here – fishermen, shepherds, and weavers – are right out of a Gabriel García Márquez story. Indeed the author, most famous for One Hundred Years of Solitude, grew up on Colombia’s northern coast, speaking both Spanish and the Wayuu language, Wayuunaiki. As we traveled deeper into the desert, we traversed small settlements with simple houses made of wood and yards surrounded by tree cacti hedges.

IMGP0996

The Wayuu village of Boca de Camarones, in the south of the Guajira peninsula, showing the living hedgerows of columnar cacti produced from tall stanchions. In the background, surrounding the homes, are Trupillos, and good specimens of Dividivi Libidibia coriaria (formerly called Caesalpinia coriaria).

This third caesalpinoid legume tree, closely related to the two Brazilwoods mentioned above, is the source of another lovely red dye, derived in this case from its pods. Until recently, there was an annual festival in Camarones, in honor of this formerly major economic plant product. The tree was also used as an important source of tannins. Like Paubrasilia echinata, it deserves more ethnobotanical and biogeographical studies.

Here, as in many other arid lands, goats and sheep are important for the Wayuu people, as a source of food and social currency. For example bride price during arranged weddings, and gifts for guests attending vigils of important elders and healers, are paid to this day in heads of live goats or sheep. Historically, mules and donkeys were very common as well, but now they are increasingly replaced by motorcycles.

IMGP0993

Small children following a flock of desert-hardy sheep in Boca de Camarones. The peaks of the Sierra Nevada de Santa Marta are visible in the background.

Crown jewel of the Alta Guajira

The crown jewel of this desert, its best kept secret, is the Serranía de la Macuira, a small mountain range (serranía meaning “small sierra” in Spanish) in the northeast of the peninsula. This miniature sky island is almost impossibly lush, thanks to moisture-bearing clouds that shroud its upper reaches. They feed streams that flow year-round, and sustain many kinds of trees that grow to well over 10 meters tall.

As one climbs the slopes of the Macuira, the humidity dramatically increases and the parched lowlands, with their desert woodlands, blend perceptibly into a seasonally dry tropical forest reminiscent of those we had seen in Panama. A little-known fact: seasonally dry tropical forests are the most endangered of all tropical forest types, and those in La Guajira are worthy of much greater research, conservation, and restoration.

Climbing higher still, the mid- and upper ranges of the Macuira seem like another world. Most astonishing of all, there is apparently an abrupt transition above 550 meters, and the higher reaches are covered in true cloud forest, with mosses, epiphytic orchids, tree ferns, and dozens of tree species that otherwise occur hundreds of kilometers away! This is probably the only place in the world where cloud forest is found less than 5 km from true desert. Fortunately – from a conservation point of view, but unfortunately for us – the upper peaks of all three peaks of the Macuira are sacred to the Wayuu, and completely off-limits, to native people and visitors alike. Try as we might, we were unable to get permission to hike up there.

IMGP1967

IMGP2002

Seasonally dry tropical forest on the northeastern facing slope of the Macuira, where precipitation is much higher than in the surrounding lowlands occupied by desert woodlands.

Even though the whole Macuira is officially protected as a national park, the reality is more complicated. While walking inside the park, we encountered recently cut trees, the ubiquitous goats, and even a Wayuu man hunting birds with a slingshot in broad daylight. The beautiful continuous tree canopy covering most of the slopes stands in stark contrast to the severely eroded, nearly bare hilltops, on which stand small Wayuu homesteads. Still, the presence of clear ecotones speaks to mostly healthy landscapes.

IMGP1898

The severe erosion around a small Wayuu farm inside the Macuira National Park.

Alta Guajira’s ecological future

The pressures on the Guajira’s ecosystem health include a large mine (El Cerrejón, mentioned above), overgrazing by domestic livestock, and stark poverty facing the native people and more recent immigrants. But there are positive factors as well. There are progressive laws in Colombia related to ecological restoration. Moreover, since 2012, Colombia has a National Restoration and Rehabilitation Plans (pdf), as well as a Law of Remediation, which imposes large environmental offset payments from large-scale development projects (like hydroelectric dams) to underwrite conservation and restoration work. Moreover, the national park system, within its network of 56 protected areas, harbors populations of almost half of the 102 indigenous peoples in the country, and in the case of Macuira, this is clearly not just a paper park idea.

Still, the national park (25,000 ha in size; officially designated in 1977), operates with a skeleton staff attempting to carry out an ambitious management plan (pdf) despite an insufficient budget. Staff and volunteers provide short tours to day-visitors, and maintain some fenced-off livestock exclosure plots, where they are studying natural regeneration. Daily interaction with the Wayuu living in the park appear to be harmonious, and indeed there is a clear sense that part of the Park’s mission is to restore and protect the Wayuu people’s natural and cultural heritage. Recently, the Instituto Humboldt, Colombia’s stellar national research institute, has established permanent plots in the Macuira range as part of a series of 17 plots including all the tropical dry forest types in Colombia. In the Macuira, this work is done in collaboration with botanists from the Universidad de Antioquia, in Medellin. Furthermore, researchers at Kew, the Smithsonian Institute, and many conservation NGOs are all developing collaborations with the Colombian government to explore and help the country move forward with green development.  The Missouri Botanical Garden also has long-standing MoUs for joint research with 3 different institutions in Colombia, with bright prospects for deepening cooperation in the future.

Like many indigenous peoples around the world, the Wayuu are at a crossroads. Their language and some of their traditions are still alive and well, but others have already faded. There are few legal sources of income in the harsh desert, the ancestral Wayuu land. How will they manage in the future? What can they do to adapt?  Some, like our guide, José Luis, are trying to change mentalities, but they clearly need more help.  As throughout Colombia, there is clear and urgent need to build on the alpha-level studies already underway, and move onto applied ecology, agroforestry and land management programs, including community-based restoration programs and ecotourism in conjunction with the national parks.

IMGP2197

Our Wayuu guide José Luis Pushaina Epiayu (on the right) and Macuira park ranger Ricardo Brito Baez-Uriana (on the left), talking about birds with a local Wayuu family.

 

What does the Black-faced Antthrush tell us about tropical forest restoration?

Anna Spiers (University of Colorado Boulder) describes a recent field experiment done with Emma Singer (Hamlin College) and Leighton Reid (CCSD) during an Organization for Tropical Studies Field Ecology Course in Costa Rica.

Bird diversity and forest restoration are synergistic. Birds facilitate forest regeneration through seed dispersal, pest control, and pollination. Forest restoration replenishes lost bird habitat by providing food, protection from predators, and suitable territory for breeding and nesting. Monitoring bird communities in a regenerating forest is an effective strategy to gauge the success of restoration.

While some birds are flexible regarding the quality of their habitat, others require a narrower set of conditions to survive. One such bird is the Black-faced Antthrush (Formicarius analis), a medium-sized, ground-dwelling insect-eater, easily distinguished by its plaintive song and chicken-like strut. The bird spends its days flipping over leaves and sticks with its bill to expose tasty ants, beetles, and other arthropods (and sometimes small vertebrates). A member of a bird family highly threatened by forest fragmentation (Formicariidae), the Black-faced Antthrush is known to disappear from small forest fragments and to struggle crossing even narrow strips of open space. Finding such sensitive birds in a regenerating forest is a positive signal that forest restoration is increasing habitat for forest-dependent species.

bfan

Black-faced Antthrush (Formicarius analis) strutting across the rainforest floor. Image: Luke Seitz/Macaulay Library at the Cornell Lab of Ornithology (ML54054261).

Earlier this month, we did an experiment to find out how different forest restoration strategies affect the Black-faced Antthrush. Specifically, we tested whether the bird exhibited a stronger territorial response in tree plantations, naturally-regenerating secondary forests, or areas where patches of trees (tree islands) had been planted to stimulate forest recovery. We expected to find that birds would be more defensive of areas where trees had been planted, given that these areas had a more closed canopy and more leaf litter for the birds to pick through for arthropods.

jlrplayback

Leighton holds up a speaker to conduct a bird call playback. Unsurprisingly, there was no response in this scrubby, abandoned pasture (one of the control points in our experiment). Image: Martha Bonilla-Moheno.

To test the bird’s territorial response, we amplified a locally-recorded sound file of the bird’s vocalization and recorded its response. We noted how long it took for the bird to respond, how many notes it sang in response, and how close it approached the speaker. For this species, a short call with 4 notes is a “hello”, but a long call with upwards of 12 notes is a warning to let the other birds know that this territory is taken.

map

Our study area at Las Cruces Biological Station in southern Costa Rica. Each of the two restoration sites contained a tree plantation, a natural regeneration area, and a “tree island” area where patches of trees were planted to kick-start forest recovery. Image: Google Earth 2018.

Antthrushes defended restoration areas where trees were planted

As we expected, Black-faced Antthrushes responded more quickly and more forcefully when we taunted them with calls broadcast from tree plantations and tree island plantings – an indication that they were expending more energy to defend these areas. However, we only found this at one of the two restoration sites. The other site was a veritable antthrush desert with not a single response during any of our trials. Leighton’s collaborator Juan Abel Rosales often finds Black-faced Antthrushes at both sites, but this second site is near a road and dogs occasionally wander into the regenerating forest, possibly causing birds to temporarily abandon this area.

maxnotesfig

Black-faced Antthrushes responded quickly and with many tooting notes when we played their song to them from tree islands, plantation, and mature forest, but they responded not at all in abandoned pastures or in natural regeneration. The data representing restoration treatments are from one site only – at the other site we recorded no birds during any trials.

Tree islands and plantation had a couple of habitat features that natural regeneration lacked. First, the understory was more open, providing ground-dwelling birds with greater visiblity. Second, planted areas also had deeper leaf litter, and leaf litter is essential for a bird that makes a living flipping leaves to find its dinner.

habitats

Understory comparison between natural regeneration (left) and a tree plantation (right). Both have been recovering for 15 years. Natural regeneration vegetation is thick and still grassy from pasture days. A closing canopy in the tree plantation produced a thinner, more visible understory, with lots of nice leaf litter, full of delicious arthropods.

So what does the Black-faced Antthrush tell us about forest restoration?

 It may be telling us two things. First, restored forests growing up alongside remnant ones can be valuable habitat worth defending. When birds spend time calling, that is time that they do not spend foraging, and they can pay a price with their energy budget. Second, tree planting may create habitat for these birds faster than natural forest regeneration – although natural regeneration is highly variable from site to site, and we only found a pattern at one site right next to an old-growth forest. Promisingly, we did not see a difference between tree islands and the tree plantation, which suggests that we could plant fewer trees and still see the return of a forest-dependent bird species within about 15 years.

For more information about the Islas Project (with the tree islands) see previous NHER posts here, here, and here. Thanks to Bert Harris for some of the ideas that we used in this project!

 

 

Native tree seedlings grow best near existing forest and beneath shade in highland Madagascar

A team of MBG scientists describes a recent experiment to grow native trees in a degraded part of Madagascar’s central highlands.

Tampo_Raw

The dissected landscape of the Tampoketsa de Ankazobe in central Madagascar. Imagery: Google Earth (2018).

Seen from space, parts of Madagascar’s high plateau look like a wizened, grayish-pink brain drying in the sun. Thin, dark lines demarcate nooks and crannies – nearly the only places where bits of forest remain.

Formerly, the forests here covered more territory. Just how much territory is debated; ancient grasslands are also present in highland Madagascar. But in this area, about three hours northwest of the capital, many forests have been cleared, burned, and converted to new grassland within living memory.

To restore forests to their recent extent would benefit a range of species, including Schizolaena tampoketsana (a threatened, micro-endemic tree) and an undescribed species of fat-tailed dwarf lemur. However, restoration has been easier said than done so far. Natural forest regeneration is slow to non-existent, even near remnant forests where fire is excluded. Planted tree seedlings grow only millimeters each year, if they survive at all. Adding fertilizer seems to inhibit seedling growth. Inoculating seedlings with mycorrhizal fungi seems promising, but we are not yet sure if this will make a difference in the field.

Following a field trip in November 2016, we decided to test a couple of other tactics for growing native trees on this weathered plateau. First, we tested planting trees near existing forest. Being near the forest could help young seedlings by shading them from the hot sun or by sharing beneficial microorganisms. Second, we put shade structures over some of tree seedlings to test how much the bright, hot sunlight prevented tree growth.

We tested four tree species: Baronia taratana (Anacardiaceae), Nuxia capitata (Stilbaceae), Uapaca densifolia (Phyllanthaceae), and Eugenia pluricymosa (Myrtaceae).

ExpDesign

An experiment with native tree seedlings at Ankafobe, a small forest fragment on the highlands northwest of Madgascar’s capital, Antananarivo. Photo: Chris Birkinshaw.

Three of the tree species survived and grew more when we planted them next to the forest. The fourth, Nuxia capitata, was a super species and grew relatively well wherever it was planted.

Two of the four species also survived more often beneath shade structures. But interestingly, this shade effect did not completely account for the effect of proximity to forest. That suggests that shade is important for protecting young seedlings from the hot sun, but something else is going on too. Perhaps trees growing next to the forest get a boost of water, since remnant forests sit at the valley bottom where water collects. If this is true, then tree seedlings might do well in any valley bottom, not just ones with remnant forest in them.

Our study site, called Ankafobe, is only a small area, so it would be a stretch to generalize our observations to the entire region. However, we are not the only ones to have done such a test in this ecosystem. In 2000, Ingar Pareliussen led a study with the same basic elements as ours at a site ten kilometers away, at Ambohitantely. Like us, Pareliussen’s team found that seedlings planted near the edge of a remnant forest grew better than those planted further away. In contrast, shade structures did not improve seedling survival. In fact, one species grew worse in the shade.

Fig_TampoEdges

One vision for landscape-scale forest restoration on the Tampoketsa de Ankazobe. We used an edge-detection algorithm in Inkscape to highlight forest edges and valley bottoms, the places where trees grew best in our study. Imagery: Google Earth (2018).

Together, our two studies begin to suggest the outlines of a vision for landscape-scale forest restoration on the high Tampoketsa de Ankazobe. If native tree seedlings perform better along forest edges, it follows that a cost-effective strategy would be to focus on planting those areas first, leaving the higher, drier areas alone. Planting along edges would also be a conservative strategy given our hazy understanding of past landscapes. Some grasslands in highland Madagascar seem to be very old, and planting trees in such places could destroy habitat for grassland species, which are threatened in their own right.

For more information about this experiment, you can read our open access paper in Plant Diversity. We have also published several other blog posts about Ankafobe.

It’s Complicated: Trees and Ecological Restoration

Discover + Share

The best time to plant a tree was twenty years ago. The second best time is now.
-Anonymous

Addendum: That is, unless the tree will grow just fine without your help or the tree doesn’t really belong there. In that case, the best time might be never.

Planting a tree is rejuvenating. It gets you outside, it’s good exercise, and it’s often good for the planet. Really, trees give us an awful lot and don’t ask for much in return. Among their many gifts are food, shade, animal habitat, building materials, erosion control, and fuel. Trees also filter our water and suck carbon out of the air. In cities, trees collect grit and grime that would otherwise coat our lungs.

But tree planting is not the same as restoration. Ecological restoration is the process of assisting the recovery of a damaged ecosystem. Trees are integral to many ecosystems, like forests…

View original post 797 more words