The importance of knowledge of cultural values for dryland ecological restoration: Lessons from Argentine Patagonia

Fernando Farinaccio, Eliane Ceccon and Daniel Pérez, describe the importance of documenting cultural values, in the use of native flora, as a contribution to the restoration of drylands. Fernando is a researcher at the Laboratory for the Rehabilitation and Restoration of Arid and Semi-arid Ecosystems (LARREA), Argentina. Eliane is a researcher at the Regional Center for Multidisciplinary Research at UNAM (National Autonomous University of Mexico), Mexico, and Daniel is the scientific director of LARREA.

NB. LARREA belongs to the Faculty of Environmental and Health Sciences of the National University of Comahue, Argentina, where sixteen researchers and collaborators study selection of species for the recovery of sites with severe disturbance, seed-based restoration, interactions between exotic and native species, agroecological systems, and restoration-based education.

The extreme socio-ecological transformation and degradation of vast areas of arid Argentinean Patagonia has its origin in the 1880s when the Argentine government carried out an official program of extermination of all Indigenous Peoples (ignominiously called the “Desert campaign”). The goal was to consolidate political dominance over the coveted territories and to expand livestock production.

As elsewhere, this genocide led to a tragic loss of human lives and the uprooting and dispossession of native inhabitants who had lived in and managed this country for millennia prior to the arrival of the Europeans – most of whom had little or no understanding of the natural dynamics of this arid and semiarid territory or in the lives and cultures of the peoples who lived there.

Aguada San Roque, an isolated rural settlement of 160 inhabitants, extends over an area of 142,000 hectares in an arid basin called “Añelo basin” in northern Patagonia. It is characterized by high altitude variability, from 223 to 2258 meters above sea level, over a linear distance of 50 km. This town is in one of the most arid ecosystems of Argentina called ‘Monte’ (Busso and Fernández 2017). This ecosystem covers 20% (approximately 50 million hectares) of Argentina. The Monte has an annual average temperature of 12°C, with a high thermal amplitude and an annual temperature range from 40°C to −13°C (Coronato et al. 2017). The relationship between precipitation and potential evapotranspiration ranges from 0.05 to 0.5, indicating a strong water deficit.

“Jarillas” (Larrea spp.; Zygophyllaceae; creosote bush, in English) are the shrub species that give the typical appearance of most natural environments of Aguada San Roque. The dominant species of jarilla (L. divaricata, L. cuneifolia, and L. nitida) can reach approximately 2 meters in height when mature. For the attentive eye, it is probable that hybridizations between them have occurred and generated, among others, the striking “dwarf jarilla”(Larrea ameghinoi), that only reaches 20 to 30 cm in height.

Photo 1. Larrea divaricata. Typical of the natural environment around Aguada San Roque, Patagonia Argentina. Credit: Daniel Pérez.
Photo 2. “Dwarf Jarilla“ (Larrea ameghinoi).A species present in some areas of the Añelo basin. Its biology and reproduction  are very poorly known, but like all Creosote bush species in southern South America and the arid regions of North America, they have enormous influence on ecosystem functioning. Credit: Daniel Pérez.

Despite the aridity of the Añelo Basin, where it rains only 150 mm (6 inches) a year on average, with some years of only 50 mm, the beauty of nature is starkly visible to those who pay attention to details, and its mystery is slowly being revealed through scientific studies of the surprising and wonderful  strategies of plant and animal adaptations to aridity and drought. For example, Grindelia chiloensis (Asteraceae) known as “yellow love” or “honey-eyed” surprises and intrigues with its sticky stems, leaves, and flowers, all bearing so much resin that it is perceptible to the slightest touch. This trait is the result of biochemical efforts to manufacture organic compounds to avoid water loss. Fully 1/3 of the dry weight biomass of individual Grindelia shrubs is made up of these dense resins that allow it to adapt and thrive under the most arid and – importantly – degraded environments.

Photo 3. Detail of the flower of Grindelia chiloensis. Credit: Paul Alvarez.

A species that has probably been benefiting from the advance of wind deposits that multiply due to overgrazing is the “Patagonian lily” (Habranthus jamesonii; Amaryllidaceae). This plant is only noticeably visible in spring, as it develops from bulbs that remain under the sand during periods of unfavorable weather.

Photo 4. Habranthus jamesonii plant and flower in a sandy environment near Aguada San Roque. Credit: Daniel Pérez.

A plant that is almost white in color due to saline exudates is Atriplex lampa; Chenopodiaceae; a member of the widespread arid lands Saltbush genus that rewards the watchful eyes of the desert dwellers (Photo 5). This species has a profuse annual production of fruits with two small bracts that act as ‘wings’(Photo 6).

Photo 5: Atriplex lampa, typical of Monte desert landscapes, with fruits (almost yellow) in spring. Credit: Daniel Pérez.
Photo 6: Fruits of Atriplex lampa. Two bracts act as wings, facilitating their flight and dispersal by the wind. Credit: Paul Alvarez.

In very saline and clayey soils of our region, Halophytum ameghinoi (Halophytaceae) is very common. This species accumulates water in its stems and leaves as a strategy to withstand droughts. Their colors vary from intensely red to green tones during the juvenile and adult growth phases (Photo 7).

Photo 7: Juvenile individual of Halophytum ameghinoi. The increase in salty soils due to degradation will probably increase the amount of natural habitat for this species. Credit: Daniel Pérez.

Sadly, Aguada San Roque, like all the neighboring settlements, is seriously affected by long-standing desertification and degradation processes. Recently, the exploitation of large deposits of shale gas and oil, using fracking technology in the geological formation called “Vaca Muerta”, has revitalized economic activity, but also has induced a new and severe wave of environmental damage both underground and on the surface.

Photo 8: The preparation of land for the extraction of hydrocarbons entails a tremendously brutal action that spells disaster for biodiversity, ecosystem ‘health’ and, ultimately, human health and wellbeing. Credit: Daniel Pérez.
Photo 9: The action of the goats is not perceived with the same sensation of negative impact as that of the heavy machines engaged in fracking. However, overstocking of domestic livestock also causes irreversible damage. Credit: Daniel Pérez.
Photo 10: Frequent dust storms are one of the consequences of overstocking livestock. Aguada San Roque. Credit: Fernando Farinaccio.
Photo 11: A barchan dune, an example of the intense erosive processes in the vicinity of the Aguada San Roque settlement. These natural processes are exacerbated by overgrazing and intense hydrocarbon extraction activity. Credit: Eliane Ceccon.

Therefore, in this region, it is essential to plan and carry out ecological restoration and rehabilitation projects and programs that take into account the harsh socioeconomic conditions of the local population and include them in the process from the beginning. Fully 24% of the inhabitants – all of whom are of “criollo” origin – live in stark poverty, and more than 30% are illiterate. Life for these people is truly precarious, with little or no easy access to potable water and gas, and only 15% have electricity in their homes. Despite these conditions, the families that live there show an admirable desire to find ways of life that will allow them to continue inhabiting these arid lands.

Photo 12: Irma and Adalberto are owners of more than 9000 hectares of arid lands dedicated to raising goats in the Aguada San Roque area. They were unable to finish their basic studies in school and they have very limited income from the goats that they sell in informal markets. They are typical puesteros, or small scale farmers, of the region. Credit: Eliane Ceccon.
Photo 13: Irma roams the arid lands trying to prevent predators such as pumas (Felis concolor) and foxes (Lycalopex culpaeus) from attacking her goats, while directing and herding them to the few locations that can provide intermittent supplies of forage and water. Credit: Eliane Ceccon.

Therefore, due to the dire socioeconomic conditions mentioned above, it is necessary to conceive and launch sustainable restoration and rehabilitation projects that in addition to recovering ecological processes and functioning must also offer tangible goods and services to the local human population. In this sense, what we call “productive restoration” may be the most appropriate strategy, since it aims to recover soil productivity and offer products for the local population, along with some of the elements of the structure and function of the pre-disturbance ecosystem. (This is comparable to ecological rehabilitation as the term is used in the Society for Ecological Restoration Primer; SER 2004).

As mentioned, a critical key to successfully developing productive restoration projects in San Roque and other settlements in Argentinean Patagonia is to know and understand the socio-ecological context of the local population, in cultural, educational, health, and socio-economic terms, and also the values that local people assign to native plant species. We carried out surveys and interviews among the local inhabitants and visits to each of their landholdings, which allowed us to evaluate the knowledge and the value that they gave to the local flora, and their interest in cultivating native (and introduced) species in future restoration projects. The ecological attributes of selected species, and their importance for the productive restoration were obtained through a literature review. This review arises as part of Fernando Farinaccio’s PhD work. For more details and information, read his open access paper in Ecosystems and People.

Photo 14: Sometimes family settlements are located in places where there is an outcrop with easy access to groundwater (for example, a natural spring).This settlement recently benefited from government subsidies to improve water storage, allowing them to purchase and install the two water tanks shown here. Credit: Eliane Ceccon.

Local knowledge and use value of the native flora

Puesteros that we interviewed identified a total of 44 multipurpose species, of which 38 were native. Among the most frequently mentioned native species, Prosopis flexuosa var. depressa, Atriplex lampa, and Larrea spp., were considered by puesteros to have the highest potential and promise to restore and rehabilitate their fields and landholdings. The main reasons were not only ecological, but also the multiple uses of the plants, such as providing high quality fodder for livestock, and firewood for heating and cooking.

Photo 15: A portion of a plantation of Atriplex lampa (a nutritious and palatable native shrub) carried out in 2012 in a degraded area near Aguada San Roque. A recent study has proposed this species as a “framework species” for dryland ecological restoration (Pérez et al. 2019). Credit: Laboratory for the Rehabilitation and Restoration of Arid and Semi-arid Ecosystems, National University of Comahue, Argentina.

Ecological attributes for the reintroduction and reinforcement of populations of the plant species most valued by puesteros

According to studies carried out locally, the most valued species show high and easy germination (with rates of >60%) and are relatively easy to propagate in plant nurseries (see Farinaccio et al. 2021). In addition, some of them have shown high success in terms of survival and growth in field experiments (>70%) (see Pérez et al. 2019; 2020). These species are attractive because they are food sources for vertebrates and invertebrates, and also offer thermal refuge and nest sites for seed dispersers (Farinaccio et al. 2021).

Characteristics of puesteros‘ home gardens

Home gardens are traditional agroforestry systems supporting subsistence of poor rural families, and they are usually located near people’s homes. These home garden shave also been the cradle for selection, domestication, diversification, and conservation of elements of flora and fauna, and the preservation of cultural values. In the puestero’s home gardens, a total of 44 species were identified, of which 85% were exotic, and used to obtain forest products (from afforestation), 47% for shade and other amenities, and only 40% to obtain forage, food, and medicine.

Photo 16. Puesteros often use exotic trees in their home gardens. The most frequently used species are Eucalyptus spp., Populus spp., and Tamarix ramosissima, all of which are used for shade and wind breaks. Credit: Fernando Farinaccio.
Photo 17. In some home gardens, small areas marked off with wooden or iron fences are used for the production of fruit trees, medicinal species, and forage (A). The cultivation of species for food consumption is also carried out (B), and in some cases, these species are protected from inclement weather (e.g., intense winds, and extreme low and high temperatures), through the construction of small greenhouses (C). Credit: Fernando Farinaccio.


The socio-ecological, economic, and cultural contexts of the Aguada San Roque community showed an unfavorable well-being panorama. Likewise, the extensive livestock production system, on which all puesteros’ depend for their subsistence, added to the intense hydrocarbon activity (fracking), have triggered an irreversible desertification process. In this context, local people recognize a low percentage of useful native species and prefer to use a large proportion of exotic species.Similar results have been documented in other studies in drylands of Argentina and the world. The low results regarding the use of native species by the local inhabitants, and the preference in the use of exotic species, show a loss of traditional ecological knowledge, which could be a consequence of the above-mentioned historical occupation of arid Argentinean Patagonia. However, they expressed motivation and interest in sharing their historical practices with restoration actions with multipurpose native species. Beyond this unfavorable panorama, the puesteros expressed motivation and interest in carrying out restoration and rehabilitation actions with multipurpose native species. The three species most frequently mentioned by the puesteros (Prosopis flexuosa var. depressa, Atriplex lampa, and Larrea spp.), were all successfully established in ongoing restoration pilot studies.

This study proposes that the interpretation of the historical, social, cultural, and ecological reality of local people is fundamental before undertaking ecological restoration and rehabilitation programs. “Top down” programs may not be successful if the local inhabitants’ needs, desires, and proposals are not taken into account. A restoration-based education program can help implement these projects successfully. The program may promote the strengthening of local capacities and the rescue of traditional knowledge; increase collective learning, to ultimately restore the historical links between local people and the native, natural ecosystem.

References cited and additional reading

Busso, C.A., O.A. Fernández. 2017. Arid and semi-arid rangelands of Argentina. In: Gaur, M.K., V.R. Squires, editors. Climate variability impacts on land use and livelihoods in drylands. New York: Springer InternationalPublishing; p. 261–291.

Coronato, A., E. Mazzoni, M. Vázquez, F. Coronato. 2017. Patagonia: una síntesis de su geografía física. Santa Cruz (Argentina): Editorial de la Universidad Nacional de la Patagonia Austral. ISBN 978-987-3714-40-5.

Farinaccio, F.M., E. Ceccon, D.R. Pérez. 2021. Starting points for the restoration of desertified drylands: puesteros’ cultural values in the use of native flora. J Ecosystem & People. 17:476-490.

Pérez, D.R., F.M. Farinaccio, J. Aronson. 2019. Towards a Dryland Framework Species Approach. Research in progress in the Monte Austral of Argentina. J. Arid Environments 161:1-10.

Pérez, D.R., C. Pilustrelli, F.M. Farinaccio, G. Sabino, J. Aronson. 2020. Evaluating success of various restorative interventions through drone- and field-collected data, using six putative framework species in Argentinian Patagonia. Restoration Ecology. 28:44-53. https:// doi: 10.1111/rec.13025.

SER (Society for Ecological Restoration International Science & Policy Working Group). 2004. The SER International Primer on Ecological Restoration.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s