Planting trees recovers 70 years’ worth of dead wood carbon pools in less than two decades

By Estefania P. Fernandez Barrancos, a PhD candidate in Biology at the University of Missouri – St. Louis and a fellow of the Whitney R. Harris World Ecology Center. Her most recent research paper in Forest Ecology and Management is freely available through March 9th.

When most people walk through a forest the last thing they probably look at is dead vegetation, and unless you are an avid mushroom harvester you probably don’t even notice dead logs. However, dead wood stores an important amount of carbon. An amount important enough that if dead wood disappeared it could promote more changes to our already rapidly changing climate.

Mushrooms on a dead log. Photo: JL Reid.

Dead wood is also a crucial habitat for many organisms such as fungi, insects, and birds. Many insects and fungi use dead wood as a source of food and nutrients, and several species of birds are only able to nest in dead logs.

A Resplendent Quetzal (Pharomachrus mocinno) exiting its nest inside a standing dead log to go harvest food for its fledglings. Photo: Estefania Fernandez.

Anthropogenic disturbances, such as logging and deforestation, can significantly decrease the amounts of dead wood present on the forest floor, sometimes leading to losses of up to 98% of dead wood. The implications of dead wood loss are potentially warmer temperatures due to the release of carbon contained in dead wood as well as the loss of habitat that is critical to many forest organisms. Tropical ecosystems contain some of the most biodiverse habitats on Earth, yet they are among the ecosystems that suffer the most from anthropogenic disturbance. For example, most forests in the county of Coto Brus in Southern Costa Rica, our study area, were transformed into cattle pasture or coffee plantations in the 1950s-1980s. Today, the landscape consists of a mosaic of cattle pasture, coffee plantations, and small forest remnants.

Deforestation to create farms and cattle pastures has decreased the amount of dead wood in southern Costa Rica. Photo credit: JL Reid.

Forest restoration is the process of assisting the recovery of an ecosystem that has been damaged or destroyed (SER International Standards) and it has a high potential to reverse the problem of dead wood loss through different strategies. In the Tropics, the most common restoration strategies are passive and active restoration. Passive restoration consists of allowing an ecosystem to recover with minimal to no human input.  In contrast, active restoration consists of assisting the ecosystem in its recovery through actions such as tree planting.

Old-growth forest (A) and and two restoration treatments: tree plantations (B) and natural regeneration (C). Old-growth forests are ≥100 years old. Plantations and natural regeneration were 16-17 years old at the time of the study. Photos:  Juan Abel Rosales & Estefania Fernandez.

Recently, I studied the pattern of dead wood re-accumulation through time after disturbance in southern Costa Rica as well as the effectiveness of passive and active restoration at recovering dead wood as it is found in undisturbed forests. To evaluate dead wood accumulation through time, my team and I surveyed dead wood volumes inside 35 forest patches of increasing ages (from 3 to over 100 years old) that were former coffee plantations. We evaluated the effectiveness of active vs. passive restoration at recovering dead wood by surveying dead wood volumes inside 17-year old passive and active restoration plots and inside nearby old-growth forests. Our passive restoration treatment was represented by natural regeneration plots around which fences were established to exclude cattle and where vegetation was allowed to re-establish naturally. Our active restoration treatment was represented by restoration plantations, where seedlings of two native (Terminalia amazonia and Vochysia guatemalensis) and two naturalized (Inga edulis and Erythrina poeppegiana) tree species were planted 17 years ago to facilitate the re-establishment of vegetation. Our reference ecosystem included nearby old-growth forests over 100 years old.

Juan Abel Rosales measures the diameter of dead logs in order to estimate their volume in an old-growth forest in Southern Costa Rica. Photo: Estefania Fernandez.
To measure the diameter of dead, rotting logs, we measured the distance between two tent poles set vertically along the logs’ edges. Photo: Estefania Fernandez.
Jeisson Figueroa Sandí establishes a transect to evaluate dead wood inside a forest fragment. Photo: Estefania Fernandez.

We found that dead wood recovers following a logistic shape through time in our study area: volumes are low initially, increase rapidly, and then plateau. The low volumes of dead wood at the beginning of succession could be explained by the fact that most of the wood remains are typically harvested by local inhabitants after lands are abandoned in our study area. As pioneer trees recolonize abandoned coffee plantations and subsequently die, they produce dead wood. As the forest grows older, there is a mix of short-lived pioneer trees and long-lived trees which contribute to large amounts of dead wood on the forest floor through branchfall and their own deaths.

Dead wood volumes as function of forest age in a chronosequence of secondary forests in southern Costa Rica. Blue dots represent the raw data (i.e. course woody debris, or CWD, volumes per hectare). The red line represents the predicted values from a generalized linear model plotted using a smoothing function. Eight outliers that were included for the analysis where CWD volume per transect was ≥125 m3ha-1 were removed for better visualization. CWD volumes in plantations (purple dot), natural regeneration (yellow triangle) and five nearby old-growth forests (green dot) are also represented. Mean CWD volumes per hectare for each restoration plot (n=5) and corresponding 95% confidence intervals are shown.

We also found that restoration plantations contain 41% of dead wood amounts found in old-growth forests, whereas natural regeneration only contained 1.7% of dead wood volumes found in old-growth forests. The extremely low recovery of dead wood in natural regeneration might be explained by the fact that our natural regeneration plots were dominated by exotic grasses which typically hamper tree colonization. If there are no trees growing in the plots, there cannot be dead wood either. This is an important finding, because it shows that restoration plantations area a faster and more efficient way to recover dead wood in this fragmented, pasture-dominated landscape, even though this restoration strategy might be more time consuming and expensive due to the costs and time of planting seedlings.

Overall, our study unveils an important forest process, showing that dead wood carbon pools recover following a dynamic logistic pattern through time in this Neotropical forest region. Knowing that dead wood is 50% carbon, our findings allow us to predict carbon stocks in Neotropical forests more accurately. Our study also shows that restoration plantations accelerate the recovery of dead wood carbon pools in this Neotropical ecosystem, and potentially promote the preservation of dead wood-associated biodiversity.

For more information, see our recent paper in Forest Ecology and Management, which is freely available online through March 8th, 2022.

The ‘botanical melting pot’ of Madeira: Notes on natural history and ecological restoration at species, ecosystem, and landscape scales

By Thibaud Aronson and James Aronson. All photos by Thibaud Aronson.

The main island of Madeira is just 740.7 km2 (286 mi2), while the handful of others are rather barren, and mostly uninhabited. That means the entire Madeiran archipelago is about the size of a medium-sized National Park in the US, such as Crater Lake, in Oregon, for a total population of just over 250,000.

For garden and natural history/cultural history-oriented travellers, Madeira and its neighbors – the cooler Azores to the north, and the drier Canary Islands – are spectacular: these are three of the most appealing areas of the Atlantic for human habitation, gardening, farming, and hiking, with floras and faunas related to European, Mediterranean, and African biota, as well as some unifying Macaronesian elements shared among the three archipelagos. Agricultural crops are also quite spectacularly varied, with a strong presence of vineyards of very stunning appearance, and also subtropical bananas (about which, for some history, including the tale of the EU’s “bendy banana law”, see here).

Traditional vineyards with heritage grape varieties on the slopes of Câmara de Lobos, west of the capital. Numerous banana fields share this valley and many others like it in the periurban area around the capital city of Funchal.

Of particular interest on the island – of combined natural and cultural heritage value, are the laurel forests (laurisilva to botanists). Mostly dominated by evergreen trees and tall shrubs of medium stature – no more than 15-20 m high – these kinds of forests typically occur at subtropical latitudes, in areas with mild climate and high humidity. They can be seen – in unconnected fragments for the most part, and with varying botanical composition of course – in places such as the Himalayan foothills, central Chile, or the highlands of Ethiopia. In Europe, true laurel forests used to cover much of the Mediterranean basin during the Tertiary era, from which they receded and disappeared as the region’s climate got progressively drier. Apart from a few fragments left in the remote Anti-Atlas Mountains of Morocco, and one small patch in southern Spain, the only surviving Atlantic laurel forests are found in Macaronesia. The highlands of Madeira hold the largest and best-preserved stands, somewhat protected over the past six centuries by the island’s dramatic topography and, since 2009, thanks to recognition as a UNESCO World Heritage site covering 15,000 hectares.

Madeira’s laurisilva is draped in mist more often than not, and exuberant lichens and ferns cling to every tree branch, giving these forests a very primeval feeling, unlike anything else in Europe. The forest type is dominated by under a dozen evergreen tree species, most notably laurels (5 species in 4 different genera of Lauraceae) and tree heaths (Erica spp.), some of which get to be exceptionally tall for Ericas. But there are several dozen endemic shrubs and herbs in the undergrowth, such as various Geraniums and several giant daisy relatives. It has three endemic bird species as well.

The whistles of the Madeiran Firecrest (Regulus madeirensis) are one of the most common sounds of the laurisilva, as this tiny sprite of a bird flits from branch to branch.
The shy Trocaz Pigeon (Columba trocaz) is endemic to the forests of Madeira. Its two closest relatives are also laurisilva specialists, found in the western Canary Islands.
The Madeiran Chaffinch (Fringilla coelebs maderensis) is most abundant along the levada canals of the Madeiran highlands, where these fearless birds have become accustomed to being fed crumbs by hikers.

The archipelago was uninhabited until Portuguese sailors claimed it for the Portuguese crown in 1417. The island’s appealing climate was not lost on them and they set about settling it. Much of what they did shaped the island that we know today and no doubt led to a massive amount of irreversible clearing, deforestation, and soil erosion, as we will discuss further on.

Madeira’s climate is very unbalanced. The northern slopes can receive nearly 3000 mm of rain in a year, while the southern part of the island is much, much drier. However, the south has gentler slopes, making it much more suitable for building and agriculture. Therefore, the Portuguese set about building levadas, irrigation canals to bring water from the north to the south. This enormous network, spanning thousands of kilometers, much of it dug from sheer cliff faces, with numerous long tunnels as well, was built over four centuries (with slave labor, many of whom lost their lives in the process); without it, large-scale settlement of Madeira would have been near impossible.

A narrow path along the levada of the Caldeirão Verde (Green Cauldron), in the island’s central highlands.
Waterfalls are plentiful along the sheer slopes of the highlands.

The island also achieved tremendous prosperity especially in the 17th, 18th and 19th centuries, thanks to its privileged position for maritime trade in the north Atlantic and, for a while, its role as one of the world’s largest sugar cane exporters. The richer inhabitants, taking advantage of the favorable weather, began a tradition of having extravagant gardens, with plants from all over the world. Indeed, a walk in the streets of any town on the island today will reveal gardens bursting with an incredible melting-pot of plants, with Hydrangeas (from east Asia), growing side by side with Agaves and Yuccas (from Mexico), Agapanthus (from South Africa), Brugmansias and Passionflowers (from the Andes), Bougainvillea from the South Pacific, and more marvels, all under the shade of massive Agathis and Eucalpyts (Australia) and Araucaria trees (Norfolk Island, and Chile)! There is perhaps no better illustration of this potpourri quality of the cultivated plants than the fact that Madeira’s official flower is the Bird of paradise, Strelitzia reginae, a native of… South Africa!

However, to anyone with naturalist’s eyes, a lot of what is seen outside of gardens is quite worrisome when one considers the island’s native flora, fauna, and varied ecosystems outside of the protected areas where the laurisilva occurs. There are massive areas of soil erosion, and as elsewhere throughout the Mediterranean region, abandoned lands and pastures that appear to have been cleared and then repeatedly burned over several centuries to maintain grazing lands for sheep and goats. Most of the extant revegetation has been done with Eucalyptus globulus, Mediterranean pines, and various other non-native conifers and  Australian Acacias. Of these latter fast-growing, colonizing, bird-dispersed trees, at least 6 are invasive on Madeira and the Azores, the worst of the lot being Australian blackwood.

Most slopes on the southern face of the island are completely overtaken by Australian blackwood (Acacia melanoxylon) invasion, as seen here just above Funchal, the capital.

So what now, from a restoration ecology perspective? Madeira is subject to strict Portuguese laws regarding sale or import of known invasive plant species; this makes a lot of sense given that already 15% or more of the flora of Portugal, and probably more than that in the Azores and Madeira consists of non-native invasives. But a lot of work beyond protection against new invasions could be envisioned, starting with control or eradication efforts on such an island whose natural beauty and biodiversity are its greatest asset. Reintroduction and reinforcement of populations of endangered native species are also needed and initial experiments in ecosystem restoration could be undertaken on the main island and perhaps some of the smaller islands as well. Education and job training and greater funding for restoration work are all needed and would probably be of great, and lasting value to local communities and the Autonomous Region as a whole. Coordination with similar efforts in the Azores, and on the mainland territory of Portugal should all be encouraged.

One invader to be carefully monitored on Madeira is Kahili Wild Ginger (Hedychium gardnerianum) a garden-escape that is known to do great ecological damage to native woodlands in Hawai’i, and elsewhere. The IUCN considers it to be one of the world’s 100 worst invasive species. Indeed, its 1.5 to 2 m tall stalks can form extensive stands, with dense mats of rhizomes, that can choke out native understory if left unchecked. Reportedly, control efforts are underway inside the Madeira Natural Park.

But what about all the areas infested with woody weeds outside the parks and UNESCO Heritage sites in the mountains? From our point of view, the extensive and multiplying stands of Acacia melanoxylon and other invasive wattles (Australian acacias), of Gorse (Ulex europaeus) and a few other noxious woody weeds we saw plenty of,  it seems clear that manual and mechanical controls, and perhaps some biocontrol would be worth testing.

And, what about everything that ecological restoration, sensu lato, could bring to Madeira? On one road, in the center of the country, we saw a rather large plantation of tree saplings that looked like Ocotea foetens, one of the five native laurels of the laurisilva. That was encouraging to see, but the trees were planted grid-fashion and in monoculture, so that it was unclear what the intention was. As readers of this blog well know, reintroduction (or reinforcement of populations) of a single species of native plant or animal is not the same thing as ecological restoration: ‘restoration of Ocotea foetens’ is a non sequitur whereas reintroduction of this native tree, or its use in reforestation does make sense.

We also learned that studies are underway regarding the native olive tree, long considered a feral ecotype or, for some systematists, a subspecies of the widespread European olive, Olea europaea, but now generally accepted as an island endemic Olea madeirensis. Pride in such native species should be definitely encouraged, serving as a driver for more attention to what should be planted in the context of future ecological restoration programs in coastal areas and hills, and in environmental education programs, parks, and botanical gardens as well.

Next, let’s consider the spectacular Dracaena draco, or Dragon tree, that prospered on Madeira and also in the Canary Islands, Morocco, and Cape Verde, until Europeans in the 15th and 16th century began aggressive tapping of the sap from this stem succulent tree – the so-called Dragon’s blood – which was widely prized as a durable natural dye. By the end of the 16th century, Dragon tree was rendered nearly extinct in its natural distribution area thanks to a typical boom and bust pattern of exploitation, and today, the only wild populations of any importance occur on Tenerife, in the Canary Islands, with a few individuals in Morocco and Cape Verde.

This iconic tree is seen planted all over Madeira, and indeed in frost-free dryland gardens all over the world. But there probably isn’t a single wild dragon tree left on the island! So, what should attempts to restore an ecosystem with populations of Dragon tree look like, over and beyond reintroductions? What reference should be used and which provenances of what trees should be planted and what else is needed for the project to survive and be meaningful to Madeirans?

Rather spotty plantation of Dracaena draco along with the showy but non-native and potentially invasive Aloe arborescens near the village of Caniçal, on the easternmost peninsula of Madeira.
A centuries-old specimen Dragon tree in one of the surviving stands of native Dracaeno draco on Tenerife, (near El Draguillo), Canary Islands.

And now, for our last snapshot, let’s consider the Foxtail Agave, that is widely planted and clearly spreading on coastal cliffs and hills in Madeira. It is an absolutely stunning plant, and of great natural history interest but it starting to naturalize, following in the pattern of Agave americana and Opuntia stricta, that could already be considered serious weeds. Local people probably don’t consider that a problem, and we can certainly understand that, given the newcomer’s graceful beauty. But like the Kahili ginger, and the widely planted Aloe arborescens, the Foxtail Agave is a serious pest on O’ahu and other Hawai’ian islands, and this should give cause for concern to Madeirans.

Fox-tail Agave, Agave attenuata naturalized near Câmara de Lobos.

But, then, who are we to say what attitude Madeirans and their authorities should adopt towards non-native invasives? Given the fact that tourism is now far and away the leading economic sector on the island, perhaps – like the Galapagos Islands, or Iceland, or Malta – greater sensitivity to the need for and the value of ecological restoration efforts will develop in the future.

One thing we could offer is a reminder that ecological restoration clearly includes restoration (or ecological and economic rehabilitation) of cultural or semi-cultural ecosystems, not to mention social-ecological systems and cultural landscapes. In the case of Madeira, this line of thinking would allow for reflection, and encourage investment in the restoration and rehabilitation of the working landscapes that thrived in lower latitudes on the southern half of the island with irrigation water being provided from the levada networks in the mountains. We can imagine remarkably interesting and inspiring landscape-scale restoration with ample opportunities for agritourism, and an expanded form of nature-based or ecotourism that would include cultural landscapes and heritage crops and traditional livelihoods, developed along corridors and valleys connecting levada canals all the way down to restored ‘working landscapes’ that certainly could have multiple benefits for local communities, for biodiversity, and for an emerging restoration economy linked to tourism. Worth considering, no?