The ephemeral forests of southern Costa Rica

Damaged ecosystems don’t recover overnight, but sometimes that’s all the time that they get. CCSD scientist Leighton Reid describes new research about tropical secondary forests in southern Costa Rica, including how long these young forests last, what’s at stake, and how we can keep them around longer.

Regrowing tropical forests on marginal farm lands is one of the main ways that humans can prevent runaway climate change. With ample moisture and long growing seasons, tropical trees often can grow quickly and pull large amounts of carbon out of the atmosphere, storing it in their wood and keeping it from trapping heat. At the same time, young forests provide habitat for plants and animals and improve water quality for humans, among many other benefits.

But even in a moist, tropical climate, trees don’t grow instantly. Typically, it takes many decades for a recovering forest to stock up all of the carbon that it can hold. And it can take even longer for some plants (like orchids) and animals (like antbirds) to return. If a forest starts to grow back, but then someone cuts it down again, these time-dependent benefits never accrue.

In other words, the hopes and expectations that many people have for young tropical forests depend on young tropical forests growing old. So do they? Our new study suggests not.

San Vito & Coto Brus Valley

The Coto Brus Valley and Talamanca Mountains in southern Costa Rica. Photo by J. Leighton Reid.

To find out how long secondary forests persist, I teamed up with Matthew Fagan, a landscape ecologist at the University of Maryland Baltimore County, and Rakan Zahawi, director of the Lyon Arboretum, as well as two students, James Lucas at Washington University and Joshua Slaughter at UMBC.

We studied a set of historical, aerial photos from southern Costa Rica, which covered the time period from 1947-2014. Previously, Zahawi and colleagues had classified which areas in each photo were forest and which areas were farms or other non-forest land uses. By comparing the maps they made for each year, we were able to see where and when new forests appeared and how long they remained as forest before they were converted to some other land use (mostly farms).

The young forests did not last long. Half of the new forests disappeared before they were 20-years old. And 85% were cut down before they were 54-years old. Larger forests and forests near rivers lasted longer.

One hectare forest fragment, Coto Brus, Costa Rica

An isolated forest fragment surrounded by cattle pastures in southern Costa Rica. Photo by J. Leighton Reid.

First, the bad news. Twenty years is not even close to the amount of time it takes for a young forest to become as diverse as an old-growth forest. For example, vascular epiphytes like orchids and bromeliads take more than 100 years to fully recover in young forests.

Carbon storage will also take a hit. If forests elsewhere in Latin America are as ephemeral as forests in southern Costa Rica, then carbon stocking over the next thirty years may be reduced by an order of magnitude.

Ephemeral forests could just be a problem in Costa Rica, but another study shows that secondary forests in eastern Peru have even shorter lifespans. There, secondary forests are cleared at a rate of 3-23% per year. Compared to that, the 2-3% per year rate of loss in southern Costa Rica is considerably better. And that’s not a good thing. Clearly we need more research on secondary forest persistence from other places.

There is some good news, though. Even though many new forests were short-lived, the ones that survived were predictable. And if we can predict where new forests will survive, we should also be able to help them survive longer. Larger forests and forests close to rivers were cut down less often than small forests and forests far from rivers. This suggests that restoring large, riparian forests could be a smart investment.

Gulfo Dulce from Fila Cruces - Coto Brus, Costa Rica

Forests and cattle pastures in southern Costa Rica. Photo by J. Leighton Reid.

Governments and other organizations can also help forests persist by creating incentives for long-term forest management, providing resources to enable long-term management, and ensuring that local people will be able to enjoy the benefits that old forests provide.

We hope that this work will lead to stronger restoration commitments. Right now, dozens of countries are setting big targets for forest restoration. For example, in 2012 Costa Rica committed to restore a million hectares of degraded land by 2020 (an area about one fifth the size of the country). There is a great opportunity for Costa Rica and other ambitious countries to plan for long-term forest restoration.

If we can begin to restore a million hectares of forest by 2020, why not plan to restore a million hectares of 100-year old forest by 2120?

Melissa's Meadow, Las Cruces Biological Station, Costa Rica

A trail through secondary forest at the Las Cruces Biological Station in southern Costa Rica. Photo by J. Leighton Reid.

For more information on this research, you can read our open-access paper in Conservation Letters or watch a video of Leighton Reid presenting to the Association for Tropical Biology and Conservation back in June. Additional papers on restored ecosystem persistence are available here and here. This work is a product of the PARTNERS (People and Reforestation in the Tropics: a Network for Research, Education, and Synthesis) Working Group on Spatial Prioritization. Funding was provided by grant DEB-1313788 from the U.S. National Science Foundation’s Coupled Human and Natural Systems Program.

How to grow instant fig trees to restore rain forests in Costa Rica

CCSD scientist Leighton Reid and Lyon Arboretum director Rakan Zahawi write about giant fig tree cuttings: how to make them and why some grow better than others.

Choosing the right species to include in a restoration project is a hard choice, but in the economy of nature, some species earn a bigger ROI than others. For example, Pacific sea otters maintain kelp forests by eating sea urchins, and wolves in Yellowstone National Park allow aspen groves to regenerate by scaring away tree-munching elk. These vital creatures are called “keystone species” because they hold ecosystems together, much like the keystone in an arch.

KeystoneSpecies

A keystone and three keystone species. (A) This small keystone holds up an arch in the Shoenberg Temperate House at Missouri Botanical Garden. (B) Sea otters are keystone predators in kelp forests. Photo by Marshal Hedin CC-BY 2.0. (C) Gray Wolves are keystone terrestrial predators. Photo by Gary Kramer USFWS CC-BY-NC 2.0. (D) A keystone fig tree feeding a Knobbed Hornbill in Sulawesi, Indonesia. Photo by T. R. Shankar Raman CC BY-SA 3.0.

Plants can be keystone species too. Around the world there are about 800 species of fig trees, and they hold tropical forests together by providing food for a wide array of animals. On any given day, the busiest tree in a rain forest is likely to be a fig tree with fruits. Monkeys, birds, bats, and others gather at fig trees to eat, and in the process, they deposit seeds of other plant species that they have been carrying in their guts. This chain of events, repeated day after day, often turns the area beneath a fig tree into a hotspot of plant diversity.

A few years ago, we had an idea to plant keystone fig trees in young forests in Costa Rica. We wanted the figs to grow as fast as they could, so instead of planting seedlings, we planted cuttings – big ones. With help from our local collaborator, Juan Abel Rosales, we cut dozens of twelve foot-long branches from eight species of fig trees. We stripped off all of their leaves to keep them from drying out, and then we planted our figs trees in shallow holes.

FicWhat

Rakan Zahawi (delighted!) poses with a three year-old fig stake.

To our delight, many of the fig trees grew!

The ones that did the best came from a special group, the subgenus Urostigma. Many figs in this group have a unique life strategy. They begin their lives in the top of a tree when their tiny seeds are deposited on a branch by a bird or some other animal. As they grow in the treetop, they send long roots down to the ground, and these roots harden and fuse together, forming a lattice-like trunk. Over time, these figs kill their host trees by taking most of the water, nutrients, and light. They also keep the host tree from growing outwards, giving them the nickname “strangler figs”. Maybe the ability to transform a flimsy, dangling root into a solid trunk is related to these figs being able to grow from cuttings.

To find out how well our planted fig cuttings might survive over the long-term, we also tracked down some fig cuttings that we had planted in 2004. We were happy to learn that out of the trees that survived for their first three years of life, all of them were still thriving a decade later.

Full disclosure: planting large cuttings is not a new idea.  Farmers in many parts of the tropics plant trees this way to create ‘living fences’ – with all of the normal fixings like gates and barbed wire, but with a row of living trees instead of dead posts. The advantages for farmers are many – their fences don’t rot and fall apart (that happens quickly in the tropics); the trees provide shade for cattle; they have a constant source of new fence posts (by cutting off a limb); and in some cases they can feed the young shoots to livestock.

Big cuttings have big benefits for restoration too. Not only are planted trees already several feet tall, you also get to skip the pricey nursery phase, and, most excitingly, cuttings have a tendency to fruit quickly.

Some of our young fig trees are now making fruit, but we will have to wait a bit longer to see whether they start attracting more big animals and whether those animals carry more tree seeds into our young forests. For now, we can say that others who are interested in growing keystone figs for forest restoration may have the best luck by working with the stranglers.

For more information, please take a look at our open access paper on this project in Perspectives in Ecology and Conservation and prior blog posts here, here, and here.

FigProduction

How to grow an instant fig tree. (A) Remove a long, thin branch segment from an adult tree. The red arrow shows a cut branch. (B) Strip the cuttings of their leaves to keep them from drying out, then carefully transport cuttings so as not to damage cortical tissue. Here, cuttings are padded by a foam mattress. (C) Remove the bark from a ring on the cutting to promote root growth. Here, a ring is being cut about 20 cm (8 in) above the base so that it will be just below the soil surface when planted. (D) Dig a shallow hole and plant the cutting. Be sure that the cutting is firmly planted to prevent it from toppling, but take care not to compact the soil too much around its roots. Photos by Rakan Zahawi.