Rules of thumb for tropical forest restoration

Sometimes farmlands quickly regrow tropical forests on their own, but other times they don’t. Dr. Karen Holl, a professor at the University of California Santa Cruz, gives some rules of thumb for when we can save money on tropical forest restoration by letting nature do the work, and when we may need to invest in tree planting.

Ambitious targets are being set to restore tropical forest because of their importance in storing carbon, regulating water cycles, conserving biodiversity, and supporting the wellbeing of people who live in tropical countries. For example, the 20 × 20 Initiative aims to restore 20 million hectares of tropical forest in Latin America by 2020. This represents an area slightly smaller than the country of Ecuador. One big question is: How are we going to restore forests at this scale with limited funds?

One of the cheapest ways to restore forest is to let nature do the work and leave forests to recover on their own. This works in some sites where forests regenerate quickly. In other cases, usually sites that have been used intensively for agriculture, the land may be covered by tall grasses (up to 3 meters, or 10 feet high) for years. Our past research shows that even within a small region, the rate of natural forest recovery varies greatly.

SideBySide

Natural forest recovery is highly variable in southern Costa Rica, even after a decade of recovery. Left: slow recovery on a former farm, still dominated by non-native grasses, with an open canopy and little tree recruitment. Right: speedy recovery on a former farm, with virtually no grass cover, a closed canopy, and diverse tree recruitment. Photos by Andy Kulikowski.

So, how do we predict which sites will recover quickly and which ones need some help in the form of clearing pasture grasses and planting trees? If we could develop some rules of thumb it would help land managers to more efficiently allocate scarce restoration funds.

To answer this question, we drew on our long-term study on tropical forest restoration in southern Costa Rica. We have research plots at 13 different sites where we removed the land from agriculture and let the forest recover on its own. Each year we measure grass cover, tree canopy cover, and how many and what species of new tree seedling establish in the plots. We have also quantified the forest cover surrounding the plots, the nutrients in the soil, and how long cows had grazed the sites in the past.

We found that two easy-to-measure variables explained on average two-thirds of variation in forest recovery 7 years later; those were the amount of grass cover and tree canopy cover measured after only 1.5 years. Plots that had more canopy cover and lower grass cover early on had a closed tree canopy and lots of forest tree seedlings from many species after nearly a decade. We were surprised that the amount of surrounding forest cover and soil nutrients did not explain much of the variation in forest recovery.

GraphAbs

Rules of thumb for predicting tropical forest regeneration on farmlands. Forests grow back quicker when there is not too much grass, a little bit of shade, and many tree seedlings already present. Illustrations by Michelle Pastor.

Of course, our results need to be tested in other recovering tropical forests. But, if they hold true, this is good news! It means that land owners and managers just need to wait a year or two and then measure the tree canopy and grass cover. If some trees have established and are starting to shade out the grasses, land managers can use the low cost method of leaving the site to recover naturally. If the site is mostly a monoculture of dense grass, then the site is a good candidate to plant native trees. Planting trees takes more resources since it is necessary to clear around the native tree seedlings for a couple of years until they grow taller than the grasses. At least now there are some general guidelines to help chose where to invest the extra effort.

For more information, see our new paper in Applied Vegetation Science. This work was supported by the National Science Foundation.

Advertisements

To plant or not to plant?*

What we think we know about how to restore tropical forests is getting a second look. A new paper produced by scientists in Missouri Botanical Garden’s Center for Conservation and Sustainable Development (CCSD), the University of Hawaii’s Lyon Arboretum, and the University of Maryland Baltimore County points out an important bias in recent studies.

How should we restore forests in places where they have been lost? This is one of the main questions that we study in the CCSD, so we were surprised last year when a big synthesis paper that compiled data from many earlier studies said that, when it comes to restoration, doing nothing was the same as doing something.

That’s only a slight exaggeration. The paper, by Renato Crouzeilles and several other scientists, said that letting a forest regrow on its own (that is, natural regeneration) was usually more successful than planting trees (that is, active restoration). Their conclusion was based on comparing many studies done throughout the world’s tropical forest regions.

Apples to oranges

The problem with this paper (and several like it) was that the set of studies looking at natural regeneration were not really the same as the set of studies looking at tree planting. The natural regeneration studies focused on forests that already existed, while the tree planting studies focused on a wider range of sites, many of which started with no forest. In other words, the natural regeneration studies had already been filtered to exclude places with a weak ability to grow forests.

Apple_and_Orange_-_they_do_not_compare

Comparing tree planting studies to pre-existing forests is like comparing apples and oranges. Photo by Michael Johnson CC BY 2.0.

To understand the problem, it is helpful to look back at the history of tropical forest restoration research. For many years, scientists who wanted to know about how forests recover after a disturbance (like a hurricane or logging) would go out and find several forests that had been recovering for different amounts of time. If you take forests that are 5, 10, and 20 years old, you can try to compare them to each other in order to see how a forest might change over 20 years. In contrast, tree planting studies usually start with a piece of land that has no trees on it. Scientists who want to know how trees grow on this land will plant some and then observe their survival and growth over time.  These trees may or may not create a forest there, as the land can vary in quality.

So where does that bring us with respect to this study? If you compare a forest that already exists with another potential forest where planted trees may or may not survive and grow well, it’s a safe bet that the pre-existing forest will have taller trees. It has a head start over the planted forests, and we argue in our paper that the comparison is not a fair one.

This means that letting forest regrow on its own is not always a better option than planting trees. In fact, there are many places – like overgrazed pastures, mine sites, and other heavily degraded lands – where forests have been cleared and most likely will not be able to grow back on their own.

Omar_KHoll

Comparison of natural regeneration (foreground) and active tree planting (background) to restore a cattle pasture in southern Costa Rica. Tree seedlings planted on the hillside are just visible in the 2005 image. The yellow circle indicates a person for scale. After nine years, active tree planting had produced a forest, whereas natural regeneration was stalled. Overgrown pasture grasses covered the ground. Natural regeneration is highly variable, so this example is not representative of all situations. Photos courtesy of Karen Holl.

 Same team!

While we were not convinced by studies that said that natural regeneration is better than tree planting, we also don’t want to take any options off the table. Natural regeneration and tree planting are not mutually exclusive – in fact, they are highly complementary. Our practical advice is that if you want to get forest back, the best option is to see if natural regeneration can do the trick before you invest in tree planting. Or better yet, set up a paired experiment comparing the two strategies at the same site.

*Thanks to Erle Ellis for coming up with the title for this blog post. For more information, please see our open-access paper and press releases at EurekAlert, UMBC News, and Science Daily.

 

Ecological Restoration in a Changing Biosphere

If you were at the MBG Fall Symposium, we want to hear from you! How did the symposium change your perception of restoration? Send us an email at leighton.reid@mobot.org.

On October 8th, Missouri Botanical Garden hosted its 63rd annual Fall Symposium. This year’s theme was Ecological Restoration in a Changing Biosphere. Author and journalist Paddy Woodworth moderated the day, and seven speakers presented contemporary perspectives on a core challenge in modern restoration ecology. Namely: in the post-COP21 world, when all three UN conventions call for scaling up and mainstreaming of restoration, it is clear that restoration will affect hundreds of millions of hectares – and as many people – over the coming decade. At the same time, we find ourselves in an era of unprecedented change where climate, ecological baselines, and future land-use changes are highly uncertain. This raises the question: What should large-scale restoration look like in the remainder of the 21st century?

symposium_group-photo_01

2016 Fall Symposium speakers. From left to right: Peter Wyse Jackson, Curt Meine, Robin Chazdon, James Aronson, Leighton Reid, Pedro Brancalion, Karen Holl, Don Falk, Paddy Woodworth, and Jim Miller. Photo by Andrea Androuais.

Talks during the morning focused on tropical forests, where much of the international restoration dialogue is focused.

  • Leighton Reid (Missouri Botanical Garden) opened with a presentation on restoration longevity – the idea that some restoration projects create ecosystems that persist for more than a century (e.g., Floresta da Tijuca), while other projects fail quickly. Dr. Reid argued that how long restored ecosystems persist is quantifiable, predictable, and manipulable, opening the possibility for more ambitious restoration planning.
  • Robin Chazdon (University of Connecticut and beyond) then spoke about forest landscape restoration, an approach that aims to regain ecological integrity and enhance human well-being in deforested, human-impacted, or degraded forest landscapes. Drawing on a wealth of large-scale studies, Dr. Chazdon made the case that natural forest regeneration is the most ecologically effective and economically feasible approach to forest restoration globally.
  • Karen Holl (University of California Santa Cruz) presented her take on research priorities for forest restoration in the Neotropics. She highlighted that researchers could make an impact by studying forest restoration at larger spatial scales, at longer temporal scales, and in collaboration with stakeholders. Improving information exchange and standardizing monitoring protocols were also among her top priorities. (Graduate students, take note!)
  • Dr. Pedro Brancalion (University of São Paulo) completed the morning session with a TED talk-style discussion of the linkages between science, technology, policy, and best practice in Brazilian Atlantic Forest restoration. Using Thomas Kuhn’s structure of scientific revolutions, Dr. Brancalion argued that restoration ecology is in a crisis period, in part because disciplinary research has predominantly created solutions at smaller spatial scales than the (growing) problems the discipline seeks to address. Perhaps restoration is ripe for a paradigm shift?
rc_pedro

Dr. Pedro Brancalion (right) asks whether restoration ecology is ready for a new paradigm shift, as Paddy Woodworth (left) moderates. Photo by Robin Chazdon.

After lunch, the conversation turned towards a major academic debate in restoration ecology. Has global change outpaced the restoration approach? And is a new approach needed?

  • Curt Meine (The Aldo Leopold Foundation) drew on his long experience in the upper Midwest, and, in particular, his studies of author and environmentalist Aldo Leopold (1887-1948). He argued that Leopold avoided the simple polarities through which some contemporary restoration debates are framed. He viewed nature in a relative way, neither entirely wild, nor entirely domesticated in any given landscape. Although he practiced ecological restoration in some contexts, he also advocated soil conservation and sustainable agriculture – activities motivated by his core values, as expressed in The Land Ethic (1949).
  • James Aronson (Missouri Botanical Garden) followed with an elucidation of the reference ecosystem concept. Reference ecosystems, he noted, help determine the social and ecological vision for a restoration project or program – a critical issue for restoring historic continuity in degraded landscapes. Dr. Aronson described a family of restorative actions for achieving progress towards the reference system, drawing on examples from Jordan and South Africa. He argued we need to look deeper into the past and ponder our choices from many angles as we decide how to do more effective restoration at the landscape and larger scales.
  • Donald Falk (University of Arizona) delivered the keynote address. He painted a disturbing portrait: rapid climate change is driving a massive forest-to-non-forest transition in the southwestern United States. In particular, many ponderosa pine forests will not be able to persist in the future where they have been in the recent past and present. Perhaps restoration ecologists should transition too. Rather than “chasing the ambulance”, maybe we could get out ahead of disasters and ease transitions between stable ecosystem states. Anticipating ecosystem transitions could mitigate the loss of ecosystem functioning that accompanies major climate-driven forest fires, but it would require a shift in restoration thinking. Importantly, Dr. Falk noted that ecosystems do not care what words we use – ecosystems respond to actions.

With moderator Paddy Woodworth’s help, we finished the day with a panel discussion, inviting questions from the audience. Among the thoughts and questions that we were left with:

  • Is ecological restoration more difficult in places with greater population density?
  • Should restoration focus on policy, economic, or cultural motivations for engaging people?
  • Are values a better guide for land management than ecological history? Are the two complementary?
  • How can the reference ecosystem concept accommodate rapid biome changes, as we are seeing in the Southwestern USA?
  • What is the way forward to mainstream serious, multisectorial monitoring and evaluation with all these new factors to consider? Who will fund it?
  • To what extent can we move from restoring degraded ecosystems to avoiding degradation in the first place?
  • Can forest landscape restoration and natural forest regeneration bridge the gap between small-scale, past restoration experience and present, large-scale restoration needs?
rc_lelandricardo

PhD candidates Ricardo Cesar (University of São Paulo) and Leland Werdan (University of Minnesota) compare notes on seedling functional traits in dry tropical forest restoration. Leland was the recipient of the annual Delzie Demaree award. Photo by Robin Chazdon.

mbg63-registrants

More than 150 people registered for the symposium. They came from three continents, five countries, and seven US states.

Epiphyte restoration in Brazil’s Atlantic Forest

CCSD restoration ecologist and PARTNERS member Leighton Reid spent 10 days collaborating with scientists and students in the Tropical Silviculture Lab (LASTROP) at the University of São Paulo. Epiphytes were a central theme of the visit.

Vascular epiphytes are plants that live non-parasitically on other plants. Readers from the tropics will be quite familiar with some epiphytes, like the ubiquitous Tillandsia of Neotropical powerlines, but temperate zoners will have seen many epiphytes as well, at the florist, the botanical garden, and the mall. These plants are incredibly diverse; by one estimate, epiphytes make up 9% of all vascular plants worldwide. But epiphytes also face serious challenges in today’s world. Habitat loss and overharvesting threaten some epiphyte species with extinction. Many epiphytes also have a hard time recolonizing new habitat in regenerating forests, but new studies on epiphyte restoration could help.

I spent the past 10 days in the State of São Paulo learning about epiphyte ecology, conservation, and restoration from students and scientists at the University of São Paulo’s College of Agriculture (Escola Superior de Agricultura Luiz de Queiroz). This part of Brazil was once covered in semideciduous tropical and subtropical forests, which hosted about 150 vascular epiphyte species. Today, only ~15% of the forest remains, but there is a large effort underway to restore 15 million hectares (nearly 58,000 square miles) of it by 2050.

blog3

ESALQ maintains shade house with more than 3,000 orchids, including (A) Cattleya loddigesii, (B) C. forbesii, and (C) Arpophyllum giganteum.

Frederico Domene is a doctoral student studying epiphyte reintroduction in restored Atlantic Forest. Like his advisor, Pedro Brancalion, Fred’s interest in epiphyte restoration stems from a passion for orchids. He grows a variety of them at his house in Piracicaba, preferring true species over horticultural varieties.

Fred picked me up in his black pickup, “mamangava”, and took me on a tour of several tree plantations where he has been developing methods for reestablishing populations of epiphytic orchids, bromeliads, cacti, and aroids. Fred’s basic procedure involves collecting epiphyte seeds (or purchasing small plants, in the case of orchids), growing them out in a nursery, and then attaching them to trees using twine or plastic. He started his work in 2010 and has been monitoring his plants, and reintroducing new plants, every year since. He uses a ladder to put the orchids up high, out of easy reach for would-be poachers.

blog2

Atlantic Forest restoration plantations. Left: 60-year old plantation along the Rio Piracicaba near Rio Claro. Right: 12-year old plantation at the Anhembi Forest Science Experimental Station. The older restoration site had considerably more naturally recolonizing epiphytes than the younger site.

Late August is mid-winter in São Paulo, and while it doesn’t get particularly cold, it is quite dry. The restoration plantations were crunchy with desiccated leaves and twigs. These are harsh conditions for epiphytes, which do not have the luxury of soil to buffer to their roots from the sunlight and dry air. Some of Fred’s epiphytes have withered and died, especially during a 100-year drought in 2012. But others are thriving, thanks to special adaptations, such as the velamen of orchid roots, which wicks up rainwater when it drips down the tree trunk during storms. Many individuals have started fruiting and flowering, a good sign for the future viability of these reintroduced populations.

epi3

Epiphyte reintroductions in restoration plantations. (A) A reintroduced festoon of bromeliads, orchids, and cacti. (B) A fruit-bearing orchid (Cattleya forbesii), six years after reintroduction. (C) This reintroduced cactus (Epiphyllum phyllanthus) seemed to grow better in tree forks than on vertical stems, as did an aroid, (D) Philodendron bipinnatifidum. (E) Two tiny cacti have germinated in this direct seeding experiment, using seeds enrobed in paper discs. (F) Even where epiphytes have dessicated and died, experimental infrastructure continues to enhance epiphyte development; here a small bromeliad (Tillandsia recurvata) uses a piece of natural twine as a foothold.

To identify the key challenges for epiphyte restoration, it is also important to study epiphyte recolonization in naturally regenerating forests. Alex Mendes, an undergraduate researcher at ESALQ, is doing just that. On an unseasonably rainy morning, Alex, Fred, and I visited three regenerating forests near the sugar town of Rio Claro. We ducked under barbed wire fences and wandered through low, dense vegetation where Alex is systematically searching for vascular epiphytes. Two forests had rather few epiphytes – mostly generalist bromeliads – but one forest had a high density of orchids, which happened to be flowering spectacularly on the day we visited. Based on historical aerial photos, Alex knows that these three forests are at least 20 years old. They are part of a network of 75 sites that he will ultimately search for epiphytes. By the end of his undergraduate program, Alex hopes to be able to predict where epiphyte communities will regenerate on their own, and where they will need more assistance.

20160831_095557

This secondary forest near Rio Claro might have felt like your average overgrown Psidium guajava patch had it not been  decorated with dozens of Ionopsis sp. orchids.

These are early days for learning about epiphyte restoration, and there is still a lot of work to be done. The projects that I visited in Brazil are making headway, complementing our research in Costa Rica. It remains to be seen under what circumstances epiphyte reintroductions will be most successful. Perhaps an even more important issue will be convincing funding agencies and land managers to think beyond trees.

IMG_0011

Fred Domene and Alex Mendes are making strides in the ecology of epiphyte reintroductions and community assembly. Here, they pose with a reintroduced bromeliad (Billbergia zebrina) at Anhembi experimental station.