Environmental determinants of plant community change during restoration at Shaw Nature Reserve

Olivia Hajek spent 10 weeks this summer studying woodland restoration at Shaw Nature Reserve with CCSD scientist Leighton Reid. She participated in MBG’s NSF-funded Research Experience for Undergraduates (REU) program.

WildFlowers

Wildflowers in the restored Dana Brown Woods: purple milkweed (Asclepias purpurescens; left) and buffalo clover (Trifolium reflexum; right).

During my ten weeks in Missouri, I completed a research project evaluating the role environmental conditions play in restoration at Shaw Nature Reserve.  Specifically, I worked in the Dana Brown Woods management unit, a part of the Missouri Ozark foothills that features diverse plant communities across its heterogeneous landscape.  Sixteen years ago, the Dana Brown Woods was a closed-canopy woodland highly invaded by eastern red cedar.  However, restoration practices including reintroduction of fire and mechanical removal of woody shrubs like eastern red cedar have dramatically changed plant communities since 2000.  I was very fortunate coming into this project because there was extensive data about the plant communities in the Dana Brown Woods from 2001-2012 while restoration was occurring.  A local botanist, Nels Holmberg, monitored understory plants beginning a year before the first fire, creating complete information about the plant community before restoration and as it changed over time.

We wanted to see how different environmental conditions affect how plant communities change over time in response to restoration.  To answer this question, we visited 300 points across the woodland and measured several environmental parameters, including aspect, slope, rockiness, elevation, and juniper stump density (juniper stumps decay slowly, so many of the trees cut in 2006 were still visible).

IMG_0049

Fieldwork in Dana Brown Woods. Olivia makes friends with a hog peanut (Amphicarpaea bracteata).

Just from field observations, we could see noticeable differences in the environment and plant community composition across the woodland.  Higher slopes were rockier, covered in old juniper stumps, and rich in sunflowers, whereas the lower regions near the Meramec River floodplain had deeper soil and more mesic plant species, like spicebush.

Data analysis confirmed that environmental gradients moderated plant community change over time. Higher, rockier areas experienced greater plant species turnover and greater increases species richness and abundance from 2001-2012, whereas shaded valleys changed relatively little.

DataPlot

Plant composition change from 2001-2012 increased with elevation, particularly during spring surveys. BC = Bray-Curtis dissimilarity, which measures the difference in plant species composition between a plot in 2001 and itself in 2012. Juniper, red oak, and white oak were subjectively determined habitat classifications at the outset of the study.

Our observations were likely driven by differential fire behavior across the woodland. Historically, fires were a frequent disturbance in the Ozark foothills. Four prescribed fires from 2001-2012 probably had larger impacts on the drier upland areas than in the wet lowlands, which would not have burned as well.

Quantifying how ecological restoration practices, like prescribed fire, vary across environmental gradients is important for land management planning, especially in the Ozark foothills where the landscape is so heterogeneous.

Poster

Leighton stood by while Olivia presented her research to the public at Sensational Summer Nights.

Vegetation changes at Shaw Nature Reserve

CCSD scientists Leighton Reid, Matthew Albrecht, and Quinn Long are teaming up with restoration ecologist James Trager and botanist Nels Holmberg to learn how ecological restoration has affected herbaceous plant communities in an eastern Missouri woodland.

What happens to Missouri’s grasses and forbs when you remove invasive shrubs? When you return prescribed fire to a degraded woodland? How do restoration impacts differ for summer-blooming plants and spring ephemerals? For dry hilltops versus mesic hollows? These are a few of the questions that we hope to address with a long-term dataset from Shaw Nature Reserve.

IMG_0101-001

Nels Holmberg (left) and Quinn Long (right) discuss the finer points of blackberry identification at Shaw Nature Reserve.

Shaw Nature Reserve encompasses 10 km2 of woodlands and glades along the Meramec River in eastern Missouri. Missouri Botanical Garden purchased the land in 1925 when coal pollution in Saint Louis was so bad that it was killing plants; the garden decided to move its collections to the country where the air was pure. Ultimately the city cleaned up, the collections stayed in Saint Louis’s Tower Grove neighborhood, and the property along the Meramec became a nature reserve and popular hiking area.

Like other ecosystems in the Missouri Ozark foothills, Shaw Nature Reserve changed considerably during the last century. Fire, once a regular disturbance, became scarce, allowing junipers to crowd in on the glades. Invasive species, like Amur honeysuckle, spread into the woodlands and created dense, understory thickets.

blue wood aster (Symphyotrichum cordifolium)

Blue wood aster (Symphyotrichum cordifolium) – a late bloomer in the Dana Brown Woods.

Twenty five years ago, Shaw Nature Reserve began to counteract these changes through ecological restoration. Staff and volunteers cleared invasive shrubs and began to periodically burn the landscape.

In 2000, restoration ecologist James Trager and botanist Nels Holmberg designed a study to monitor restoration effects on herbaceous vegetation. Holmberg surveyed 30 transects twice per year from 2000-2012, recording the abundances of more than 360 plant species. Restoration in this area started in 2003, so the first two years of Holmberg’s transects represent a pre-restoration baseline against which we can compare data from the subsequent decade.

OLYMPUS DIGITAL CAMERA

Holmberg’s dataset contains more than 50,000 rows. Thanks to Christian Schwarz for digitizing them!

Recently, we plotted Holmberg’s transects on Google Earth. The images show clear changes since restoration began almost 15 years ago.

DBW1995

Holmberg’s transects transposed on a 1995 aerial photo of Shaw Nature Reserve – zoomed in on the Dana Brown Woods. This photo was taken in early spring before most trees leafed out. Dark vegetation is predominantly eastern red cedar (Juniperus virginiana). Holmberg originally grouped the transects into three classes based on the dominant vegetation.

NelsAug2005

Juniper clearing began in 2006. This is what the summer-time forest looked like the year before…

DBW2006

…and after juniper clearing. By 2006 the Dana Brown Woods had been burned twice with prescribed fires, and a lot of the junipers had been cut out. Compare the open/brown areas in this photo with the solid green canopy in 2005.

DBW2014

The most recent imagery, from October 2014, shows some fall color. Note that “red oak” mostly refers to upland Shumard oak, Quercus shumardii.

Our plan for 2016 is to analyze changes in understory vegetation composition over twelve years. Stay tuned for more information in this ongoing project!