Botanizing a Central Appalachian Shale Barren

Leighton Reid describes a field trip to a unique, natural community with Tom Wieboldt, retired curator of the Massey Herbarium at Virginia Tech.

From southwestern Virginia to central Pennsylvania, ancient shale formations jut out of the mountains at wonky angles. Loose and crumbly, the rocks bake in the sun. Surface temperatures can reach 60° C (140° F) – comparable to a desert. Rocks slip and tumble easily on the steep slopes. Few eastern plants are tough enough to hack it under these conditions. Among those that can, a few are globally unique.

On a warm day in August, I had the opportunity to botanize one such place – a central Appalachian shale barren in Craig County, Virginia – with Tom Wieboldt, retired curator of the Massey Herbarium at Virginia Tech (VPI), and a leading authority on shale barren flora. As we hiked and photographed plants, we talked about the conservation and potential for ecological restoration of these rare communities.

Shale barren wild buckwheat (Eriogonum allenii), a central Appalachian endemic whose relatives are mostly west of the Mississippi.

The gems of the shale barrens are the endemics. Amazingly, 22 species are found mostly or exclusively on central Appalachian shale barrens. Another seven species are rare or disjunct from the rest of their range – typically far to the west. For example, the closest population of chestnut lip fern (Cheilanthes castanea) outside of Virginia and West Virginia is in Oklahoma.

Virginia white-haired leatherflower (Clematis coactilis), a Virginia endemic and one of three leatherflowers endemic to central Appalachian shale barrens.
Shale-barren ragwort (Packera antennariifolia) had already finished flowering by August, but its leaves lived up to their name, looking very much like pussytoes (Antennaria sp.). This plant is strictly endemic to shale and metashale barrens.
Kates Mountain clover (Trifolium virginicum) was long thought to be a shale barren endemic, but it also occurs (rarely) on other substrates.
Shale barren evening primrose (Oenothera argillicola), a strict shale barren endemic.
The teeny-tiny flowers of mountain nailwort (Paronychia montana), a plant that is not quite endemic to shale barrens. It also occurs on a variety of other substrates.

Shale barren plant communities exist in a dynamic equilibrium. The steep, brittle shale formations often are under-cut by rivers, which carry away rocks and cause further erosion. In essence, the entire slope is constantly slipping downwards. Successful plants find the most stable areas and send down deep roots to try to keep their place on the rocky conveyor belt.

Why do shale barrens occur only in the Central Appalachians and not also in the Southern Appalachians? Tom gave me two reasons. First, the shale deposits in the Central Appalachians get thinner south of Montgomery County, Virginia, where Virginia Tech is located. Second, the high Allegheny Mountains in West Virginia create a rain shadow over parts of the Central Appalachians, more so than the more southern and shorter Cumberland Mountains. Drier conditions in the Allegheny rain shadow contribute to the shale barrens’ uniquely western ambiance.

Inhospitable as they are, shale barrens are not immune from human pressures. They are sometimes crossed by roads or utilities, and shale banks are sometimes quarried for road-building material. Livestock and overpopulated white-tailed deer browse the plants and catalyze erosion, while also adding nitrogen and foreign seeds to the sparse soil.

Craig Creek undercuts several shale bluffs, hastening their erosion and creating the conditions for shale barren plants to flourish.

Can disturbed shale barrens be restored?

When Reed Noss visited a Virginia shale barren for his book Forgotten Grasslands of the South, he found traversing the slippery slopes, lurching from one scattered red cedar to another, “close to suicidal”. I had similar thoughts following Tom up the mountainside. He climbed like a mountain goat, wandering out on thin ledges to collect interesting looking mosses.

Tom Wieboldt collects an interesting-looking moss from the side of a crumbling cliff.

As we walked, Tom wondered aloud whether it would even be possible to restore such a fragile plant community if it was destroyed. Wouldn’t it be better just to leave these places alone?

Undoubtedly leaving these places alone would be better. But I enjoyed thinking about how one might restore a shale barren that had already been destroyed – by quarrying, for instance. A first step might be to recontour the slope, aiming to reestablish a dynamic equilibrium with some areas eroding more actively than others. Perhaps this could be done by a skilled operator with some of the same quarrying equipment that had previously exploited the loose shale.

To revegetate such a place would require a source of propagules. I am teaching a course on Plant Materials for Environmental Restoration, so I put it to my students to find out whether shale barren plants were available from two major conservation seed suppliers. The results were not promising. Out of 86 native, non-woody angiosperms found in central Appalachian shale barrens*, less than a quarter (23.3%) could be purchased from any major seed supplier, and only 2.3% were available as seed collected from Virginia. None of the endemics were available.

As far as I can tell, few shale barren restorations have been undertaken, but I did read about one attempt in a shale barren in Green Ridge State Forest, Maryland. Whereas some shale barrens are actively threatened by acute pressures, like quarrying, this small (0.6 ha) barren was passively threatened by steady encroachment from the surrounding forest. Trees, especially pignut hickory (Carya glabra), were growing into a formerly open barren, stabilizing the soil and cutting off direct sunlight to plants closer to the ground. Managers restored the site in 2010-2011 by removing some of the pignut hickories and by burning the area during the winter. Together, these actions resulted in greater herbaceous vegetation cover and greater species diversity.

Central Appalachian shale barren, Craig County, Virginia, with a mix of shale barren wild buckwheat (Eriogonum allenii) and hairy lip fern (Cheilanthes lanosa) dominating the foreground.

Thanks to Tom Wieboldt for a fun field day, an excellent guest lecture, and stimulating discussions about botany, conservation, and restoration. To learn more about this unique natural community, read Tom’s co-authored chapter about shale barren communities in Savannas, Barrens, and Rock Outcrop Communities of North America, or Reed Noss’s chapter on shale barrens in Forgotten Grasslands of the South.

*For the seed availability exercise, we used the list of plants recorded by the Virginia Natural Heritage Program in their description of Central Appalachian Shale Barren (Shale Ridge Bald / Prairie Type) CEGL008530. We excluded woody plants, non-native plants, and ferns.

Plant diversity, soil carbon, and ecological restoration in Virginia grasslands

Kathlynn Lewis is an undergraduate researcher in the School of Plant and Environmental Sciences at Virginia Tech. She is studying soil carbon storage as part of a larger project on grassland floristics, conservation, and restoration in northern Virginia. Keep up with her research on Twitter by following @KathlynnLewis.

How many rare or “cool” plants do you drive by every day without noticing? Do you brake for Buchnera americana? Do you pull over for Pycnanthemum torreyi? This is something not a lot of people think about, and I didn’t think about either until very recently. The answer is that there are more cool plants along roadsides than you would think. Some of the rarest grassland plants in Virginia have found a home in roadside clearings and powerline cuts where regular removal of trees has created an opening for them to grow and sometimes thrive.

This summer the Virginia Tech Restoration Ecology Lab team has been hard at work doing plant and soil surveys in several counties of northern Virginia. We are partnering with the Clifton Institute and Virginia Working Landscapes to find out where these rare grassland plants can be found and what are the greatest threats these populations face.

American bluehearts (Buchnera americana) – a charismatic hemiparasite and rare denizen of high-quality Virginia grasslands. Photo by JL Reid.

Many of the native vegetation surveys have taken us to the locations people might expect to find high-quality grassland plants, such as parts of Manassas Battlefield National Park where the soil and ecosystem have remained relatively undisturbed for almost 80 years. Other areas are much less expected. Rare plants also show up in power line right of ways and strips of roadside with tire tracks crisscrossing them in every direction and markers stuck in the ground indicating the soil was completely displaced to bury utility lines.

A flourishing native grassland at Manassas National Battlefield Park. In July, it was bedazzled with the hot pink inflorescences of scaly blazing star (Liatris squarrosa). Photo by JL Reid.
A hidden gem – high diversity native grassland along a back road in Culpeper County. The two lines show our 50 × 2 m sampling transect. Photo by JL Reid.

During June, we collected samples from 29 sites to compare plant species diversity with the amount of carbon stored in the soil. We also sampled soils from grassland restoration plantings and pastures “improved” with tall fescue (Schedonorus arundinaceus) to compare the effect of different management practices and ecological restoration on soil carbon sequestration. The soil work is my part of the project. My prediction is that soil carbon storage will be greatest in diverse, native grasslands and lowest in degraded fescue fields. I expect that restored grasslands will be intermediate.

A “blackjack” soil sample from a power line right of way in Culpeper County. This soil had so much clay you could pull it out of the probe and tie it in an overhand knot. Photo by JL Reid.

Power line right of ways are an interesting focus of this study because they present both opportunities and challenges for plant conservation. Power companies keep these areas open by cutting out trees and spraying young sprouts with herbicide. This management is the only reason that grasslands exist in these places today, but the rare plants that live there are at constant risk of collateral damage. At least two of the areas that we sampled in June were sprayed in July, harming populations of rare plants like Torrey’s mountain mint (Pycnanthemum torreyi) and stiff goldenrod (Solidago rigida).

Rose-pink (Sabatia angularis) next to a power line right of way in Prince William County. This plant can give away a good grassland even at 60 miles per hour. Photo by JL Reid.

The vegetation surveying team has already observed over 450 species across the 29 sites sampled. Not all of these species are a welcome presence though. Invasive species appear to pose one of the largest threats to Virginia grassland ecosystems we have observed in the field. A newly emerging and particularly aggressive invader is joint-head grass (Arthraxon hispidis) which we have found in many of the sites we are sampling. This annual grass is similar to Japenese stiltgrass (Microstegium vimineum) but there is very little information about its effects on grassland ecosystems or methods for controlling it.

Joint-head grass (tan-colored thatch) smothering one of the most diverse grasslands in northern Virginia. Photo by JL Reid.

The plant survey team is now doing a second round of sampling to identify later-blooming species, and they are collating information about the land use history at each of our study sites. The soil samples we collected are currently being analyzed (by me) in a lab at Virginia Tech. We will start analyzing data in the fall and hope this summer’s fieldwork will help inform future research projects and the conversation around land management in Virginia grasslands.

The author collects a panic grass (Dichanthelium sp.) for further observation. Photo by JL Reid.

To find out how ecological restoration affects grassland soil carbon storage in northern Virginia, follow the author on Twitter @KathlynnLewis.