How does prescribed fire affect a threatened terrestrial orchid?

By Leighton Reid and Ryan Klopf

Leighton Reid is an assistant professor of ecological restoration in the School of Plant and Environmental Sciences at Virginia Tech. Ryan Klopf is the Mountain Region supervisor and natural areas science coordinator for the Virginia Natural Heritage Program. They describe a new research project that aims to understand how an important restoration tool impacts the population dynamics of federally threatened small whorled pogonia orchids. This project has an open PhD position available to start in January 2023; details can be found at the end of this post.

Deep in the heart of Virginia’s Shenandoah Valley, nestled against the western edge of the Blue Ridge Mountains, two clusters of small, green orchids grow in the dappled sunlight of a woodland understory. The orchids are small whorled pogonias (Isotria medeoloides) – a rare species that is considered threatened by the United States government because its population is declining so quickly that it could become endangered in the foreseeable future. We have monitored these populations for the past two summers, keeping tabs on every individual, to learn how this species is affected by one of the most important restoration tools in North America – prescribed fire.

A small whorled pogonia orchid with two flowers at Mount Joy Pond Natural Area Preserve. Photo: Lindsay Caplan.

Small whorled pogonia

As their name implies, small whorled pogonias are small (≤25 cm) and whorled (their leaves radiate outward from the stem). This species is a member of the Pogonieae, an orchid tribe that includes species in Asia and eastern North America. Its closest relative is the large whorled pogonia (I. verticillata) which sometimes grows alongside small whorled pogonia, but is distinguished by its purplish stem (small whorled pogonia has a whitish green, glaucous stem).

Small whorled pogonia (left) with a whitish, glaucous stem compared to large whorled pogonia (right) with a purplish stem base. Photos: Sara Klopf (left) & JL Reid (right).

Small whorled pogonias emerge from the leaf litter in late spring and in some years produce one or two solitary greenish yellow flowers, particularly when plants are exposed to more sunlight. Their flowers do not require any help with pollination; they produce the same amount of seed whether they are cross-pollinated or pollinate themselves.

The seeds themselves are tiny – like vanilla seeds, which are in the same orchid sub-family (Vanilloideae). The parent plant (which is usually both a mother and a father) provides almost no resources at all to its offspring. Each seed’s fate is closely linked to whether or not it finds a mycorrhizal fungus in the Russulaceae family to help it acquire the resources that it needs to survive and grow. In a typical relationship between plants and mycorrhizal fungus, the fungus scours the soil for nutrients like nitrogen and phosphorus and provides them to the plant in return for energy in the form of carbohydrates, which the plant produces through photosynthesis.

A developing fruit on a small whorled pogonia orchid at Mount Joy Pond Natural Area Preserve in June 2022. Photo: Andres Cunningham.

Fire and water at Mount Joy Pond

The story of this research project begins about 80 years ago, in a DuPont chemical plant in Waynesboro, Virginia. In the 1930s-1950s, the DuPont facility used mercury to produce rayon – a synthetic, silk-like fiber. Some of the mercury escaped from the plant and leaked into the South River – a tributary of the Shenandoah River. Mercury is a neurotoxin, and in the environment it can accumulate to dangerous levels in animals that are higher on the food chain, like fish. For many years, people living along the South River have been warned about the poor water quality and advised not to eat the fish.

In 2016, DuPont reached a $50 million USD settlement with the United States Department of Justice, the Department of the Interior, and the Commonwealth of Virginia to restore habitat for wildlife in the South River watershed, enhance water quality, and improve recreational areas. This settlement represented one of the largest environmental damage settlements in United States history.

Some of the DuPont settlement money was allocated to the Virginia Natural Heritage Program, a division of the Virginia Department of Conservation and Recreation that uses science-based conservation to protect Virginia’s plants and animals. Specifically, funds were provided to allow the Virginia Natural Heritage Program to protect and restore woodland habitat surrounding a unique wetland at the Mount Joy Pond Natural Area Preserve in Augusta County.

Briefly, Mount Joy Pond is a Shenandoah Valley Sinkhole community; that is, it is a groundwater-controlled wetland that floods intermittently when water percolates up through underlying carbonate rocks and then floods over the top of a clay lens perched in a layer of soil derived from the overlying sedimentary rocks. When this happens, the water becomes trapped, like water in a saucer. This unique situation creates wetland habitats which have persisted for the past 15,000 years and contain numerous rare and disjunct species, including the globally rare Virginia sneezeweed (Helenium virginicum). There are several dozen Shenandoah Sinkhole ponds, but only a handful of them are protected.

Virginia sneezeweed, an endemic species in the southeastern United States with disjunct populations in Virginia’s Shenandoah Valley sinkhole ponds and in a similar wetland situation in the Ozark Mountains of southern Missouri. Photo: JL Reid.

In the past, Mount Joy Pond filled with water every few years, but in recent decades it has filled up less and less often. To restore the wetland’s hydrology, the Virginia Natural Heritage Program set out to thin the surrounding forest and re-introduce fire to prevent fire intolerant trees, such as red maple, from regenerating. This may sound counterintuitive to some, but the logic is this:

  • Each tree is like a drinking straw sucking water out of the ground and releasing it into the air via transpiration. If there are a lot of trees, the groundwater may stay too low to fill up the pond.
  • Fire used to be much more common in the Shenandoah Valley. Prior to European colonization, Indigenous People burned the landscape and maintained much of it as savanna and open woodland – ecosystem types that have fewer trees than present day forests.
  • By removing some trees and reintroducing a regular fire cycle, land managers at Mount Joy Pond Natural Area Preserve can restore an open woodland and raise the groundwater level, causing the pond to flood more often.

The Virginia Natural Heritage Program began to implement this restoration project in 2017, and the first thinning operations and burn were a success. In the years since, the groundwater level appears to have gone up, suggesting that the hydrological restoration plan is working.

Small whorled pogonia discovery

In the first spring after that first fire, a botanist was surveying the burned woods near the pond and found something unexpected – a small population of small whorled pogonia orchids, which had not been seen previously in the preserve despite extensive surveying by the Virginia Natural Heritage Program’s inventory team. Were the orchids there all along and nobody noticed them? Maybe. Or maybe the fire helped the orchid population emerge after years of suppression in the dense leaf litter in the shady understory.

Our team uses a grid sweep survey to search for new small whorled pogonia individuals in June 2022. Photo: JL Reid.

The story became more complicated later that summer when a more intensive search turned up a second population of small whorled pogonia orchids on the preserve – this one in an area that had not been burned.

The immediate consequence of discovering the new pogonia populations was that the United States Fish and Wildlife Service expressed concerns that future fire management might be detrimental to this threatened species. Nobody had studied how small whorled pogonia responds to fire, and there was a chance that burning could damage the population, even if it was good for the nearby pond’s hydrology. Of course, there was also a chance that not burning could damage the population. With fire, inaction is still an action.

To help settle the issue, the United States Fish and Wildlife Service agreed to sponsor a PhD student to study the small whorled pogonias at Mount Joy Pond and figure out how their population dynamics are impacted by prescribed fire.

Lindsay Caplan and Jimmy Francis monitor a population of small whorled pogonias at Mount Joy Pond Natural Area Preserve in June 2022. Photo: JL Reid.

Effects of prescribed fire on small whorled pogonia orchids

The main goal of our ongoing research is to understand how prescribed fire impacts small whorled pogonias. To do this, we will map and monitor the two subpopulations and the woodland plant communities in which they live. Over the next two years, one of the two subpopulations will be burned during a winter or early spring prescribed fire, and we will continue monitoring to document changes in plant vigor, reproduction, and population size. We will pay special attention to the light environment, which seems to be important for small whorled pogonia reproduction, and to the diversity and composition of soil fungi, which are important for small whorled pogonia emergence. We will also conduct annual surveys of the entire reserve to search for additional populations.

Ethan Dunn uses a canopy imager to measure canopy cover, photosynthetically active radiation, and leaf area index over a tiny small whorled pogonia individual in July 2021. Photo: JL Reid.

This project is just beginning. To date, we have monitored the two populations for two growing seasons (2021, 2022). There is still much work to be done. One of the next steps will be to produce an accurate map of each plant’s location, which will require centimeter-level precision using high-quality GPS equipment under a forest canopy.

We are currently seeking a PhD student to lead this research project starting in January 2023. A description of this opportunity is below. This project is an excellent opportunity for a student to develop expertise in ecological restoration and threatened species conservation from both a scientific perspective and an on-the-ground land management perspective.

Ultimately, the results of from this study will inform management of natural areas and small whorled pogonia restoration projects throughout the species’ wide range – from Ontario to Georgia.

Drought, flood, and fire: an unexpected habitat recipe for at-risk bats

Mike Saxton is an ecologist restoration specialist at Shaw Nature Reserve, a 10 km2 mosaic of restored and reconstructed woodlands, prairies, wetlands, and riparian forest along the Meramec River in Gray Summit, Missouri.

For most land managers, there aren’t enough hours in the day. Between invasive species management, native seed collection and prescribed fire implementation, there are never enough boots on the ground. Add in equipment break downs, erratic weather and administrative tasks and it’s no surprise that with so many balls in the air, something gets dropped. Far too often, we drop the ball on science and monitoring, which are critically important for biodiversity-driven ecosystem management and restoration. Research and monitoring can, in some cases, be expensive; usually they take a certain amount of specialization, and they most certainly take time. For these reasons and many others, land managers build partnerships with universities, collaborate with outside agencies, and engage the public in community science to meet research and monitoring needs.

What follows is an example of a highly successful partnership between non-profit organizations, a private consulting group, and a federal agency to better understand and protect a federally endangered species.

A female Indiana bat, “Celeste”, captured during mist netting surveys at Shaw Nature Reserve in 2017 and 2019. Photo credit: Cassidy Moody.

In 2017, Shaw Nature Reserve hosted a Bioblitz partnering with the non-profit Academy of Science, St. Louis. For two days, participants combed the area looking for as many plant and animal species as they could find. A single federally endangered Indiana bat (Myotis sodalis) was captured during an evening mist netting session along a riparian corridor, marking the first time this species was documented at the Nature Reserve.

Wildheart Ecology, the local consulting firm which carried out the Bioblitz bat survey, returned in the summer of 2018 to deploy acoustic detectors to further document bat populations at the Nature Reserve. The data revealed the presence of nine different species, including the Indiana bat, the endangered gray bat (Myotis grisescens), and several other species of conservation concern.

The audio signature of an Indiana bat, captured by detectors at Shaw Nature Reserve. Courtesy: Wildheart Ecology.

After these surprising and impressive findings, scientists at the U.S. Fish and Wildlife Service carried out mist netting in summer 2019 at the Nature Reserve to gather more information about the federally endangered population of Indiana bats. Netted individuals were tagged and fitted with tiny transponders. Using telemetry, USFWS staff were able to locate a maternal roost colony tree in the Meramec River flood plain. After multiple emergence sampling events conducted at dusk, the population is estimated to be 150+ individuals, making it one of the largest recorded in Missouri.

Indiana bat roost site at Shaw Nature Reserve. Photo credit: Cassidy Moody.

So how did Shaw Nature Reserve end up with one of the state’s largest populations of at-risk bat species? The story begins in fall 2015, when a major flooding event on the Meramec River deposited large amounts of woody biomass and created logjams in the Nature Reserve’s floodplain. Another major flooding event in the spring 2017 compounded these conditions. In the fall of 2017, moderate drought gripped the region, drying leaf litter and woody fuels on the forest floor. In November of that year and on a low humidity day in drought conditions, we conducted a prescribed fire that thoroughly burned the floodplain forest, which normally does not carry fire. The flames crept into flood-debris logjams, causing a major conflagration. Dozens of floodplain forest trees died — mostly silver maple, elm and cottonwood— leaving an open patch of larger-diameter snags, or upright dead trees. It is in these snags where the federally-endangered Indiana bats have found a home. Turns out, the serendipitous convergence of flood, drought, and fire created just the ideal conditions. Couple that with high-quality foraging areas across a healthy, diverse, managed landscape and this population is thriving.

Indiana bat roost habitat along the Meramec River at Shaw Nature Reserve in Gray Summit, Missouri. Photo credit: Cassidy Moody.

Current status of Indiana Bats

Unfortunately, like many bat species, the Indiana bat has been in decline and imperiled by human disturbance and disease. According to the U.S. Fish and Wildlife Service, hibernating Indiana bats are especially vulnerable to disturbance, since they often congregate in large numbers – from 20,000 to 50,000 – to overwinter. A large number of deaths can occur if humans disturb these caves during hibernation. While other factors are also responsible for their decline, the devastating wildlife disease known as white-nose syndrome — discovered in 2006 — is a serious threat to the long-term survival of the species.

According to the U.S. Fish and Wildlife Service population status update, the states with largest net loss of Indiana Bats since 2007 (% decline since 2007) includes:

1. Indiana: -53,220 (-22%)
2. New York: -39,367 (-75%)
3. Missouri: -18,157 (-9%)
4. Kentucky: -15,220 (-21%)
5. West Virginia: -14,125 (-96%)
6. Tennessee -6,509 (-73%)
7. Ohio: -4,739 (-62%)
8. Pennsylvania: -1,027 (-99%)

What Can Be Done

With thoughtful management and strategic planning, conservation practitioners can conserve and restore bat habitat. Providing a continuous supply of roosting trees and maintaining a habitat structure to facilitate foraging are key aspects of restoration and management plans for bats. According to the Beneficial Forest Management Practices for White Nose Syndrome-affected Bats, below are some best-practice guidelines for achieving these goals:

  • Harvest timber during the hibernation period to eliminate or significantly reduces the likelihood of direct fatality or injury to tree-roosting bats.
  • Create large-diameter snags and canopy gaps, via girdling or chemical (e.g., “hack and squirt”) methods, to increase sun exposure to existing and potential roost trees.
  • Increasing midstory openness to facilitate travel corridors and foraging opportunities via increased mobility and insect prey detection.
  • Retain or create large-diameter snags during forest regeneration harvests or when managing stands affected by windthrow or disease/insect outbreaks.
  • Limit aerial or broadcast spraying near known hibernacula, maternity sites, and surface karst features, unless it can be demonstrated that it would have no adverse impact on bat populations or habitat.
  • Avoid disturbances near maternal roost sites or colonies when possible.
  • Fell hazard trees that appear to provide bat roosting habitat and do not pose an imminent danger to human safety or property during winter (hibernation period) and avoid removing them during June and July when non-flying bat pups may be present.
  • Avoid burning during cold periods since this can be detrimental to colonies of some species if individuals cannot escape smoke and heat from fires.
  • Apply low-intensity fires when possible since high-intensity fires are more likely to cause injury.
  • Account for caves, mines, important rock features, bridges, and other artificial structures when developing burn plans since these locations are often occupied by roosting or hibernating bats.
  • Remove hazard trees and construct fire-lines during winter, when possible, to reduce chances of removing occupied roost trees or disturbing maternity colonies.
  • Protect known maternity roost trees and exceptionally high-quality potential roost trees (e.g., large snags or large-diameter live trees with lots of exfoliating bark) from fire by removing fuels from around their base prior to ignition.
  • Limit management activities and disturbances near cave entrances.
  • Eradicate and control invasive plants to improve habitat quality for bats.

A ten-year woodland restoration trajectory

Leighton Reid describes a long-term ecological research project at Shaw Nature Reserve (Franklin County, Missouri, USA). To learn more, read the new research paper (email the author for a pdf copy – jlreid@vt.edu) or tune in for a webinar from the Natural Areas Association on April 21 (register here).

In 2000, the Dana Brown Woods were dark and dense. Brown oak leaves and juniper needles covered the sparsely vegetated ground, and invasive honeysuckle was creeping in around the edges. Biologically, the woodland was getting dormant.

In contrast, the woods today are lit by sunlight everywhere except the lowest-lying streambanks, and the ground is hardly visible beneath a green layer of diverse, ground-level foliage. These changes were most likely caused by two actions: burning the woods, and cutting out invasive trees and shrubs.

Many practitioners have seen woodlands recover to some extent when they are burned, but few have documented the recovery as thoroughly and over so long a period of time as Nels Holmberg and James Trager.

IMG_0101-001

Nels Holmberg (left) discussing the finer points of Rubus identification with Quinn Long in the Dana Brown Woods.

Nels is an ecologist and sheep farmer in Washington, Missouri. He has inventoried the plants at several state parks and natural areas. In 2000, Nels teamed up with Shaw Nature Reserve’s resident natural historian, James Trager, and together they designed a study to describe how ecological restoration was changing the woodland flora at the reserve. They picked the Dana Brown Woods as their study area.

In a nutshell, Nels and James chose 30 random points on a map. They divided the points evenly across three ecological communities. They placed 10 points in mesic woodlands – the gently sloping parts of the property where white oak and shagbark hickory were most prevalent. Ten points were in areas dominated by eastern red cedar – mostly thin-soiled ridgetops that faced the south, and ten points were in forest – the lower, thicker-soiled toe slopes where northern red oak and Shumard oak were dominant in the canopy with paw paws and spicebush down below.

Fig_RevisedHabitats_HiRes_v2.3

Three ecological communities in the Dana Brown Woods: (A) red cedar dominated areas which, after removing red cedar, looked more like dolomite glades in some parts; (B) mesic woodlands with lots of oak and hickory in the canopy; and (C) forest – which had a much darker understory.

At each point, Nels hammered in a t-post, then walked 50 m in the steepest direction and hammered in another t-post. This was his transect. Every year for more than a decade (2000-2012), Nels walked the transects and recorded every stem of every species that was inside of 10 0.5-m2 study plots. Actually, he did this twice per year – once in the spring to capture the ephemeral plants, and once in early summer. Over the course of the study he spent more than 200 days in the field.

Canopy Cover

Dana Brown Woods before (left) and after (right) red cedar removal, with Nels’s 30 transects. The horizontal axis of the image is about 0.9 km. Imagery is from Google Earth.

During this time the stewards at Shaw Nature Reserve were busy restoring the woods. From 2001-2012, they burned the woods five times. This amounted to about one fire every three years. In 2005-2006, they brought in a logging crew to remove all of the eastern red cedars.

Maker:L,Date:2017-8-24,Ver:5,Lens:Kan03,Act:Kan02,E-ve

James Trager lights a fire in a woodland at Shaw Nature Reserve.

BigJuniperStump_20151104

One of several thousand red cedar stumps from trees that were harvested from the Dana Brown Woods in 2005-2006.

Plot R8

One of Nels’s sampling quadrats in the Dana Brown Woods. Photo: Nels Holmberg.

I met Nels and James in 2014. I had just joined Missouri Botanical Garden’s Center for Conservation and Sustainable Development as a postdoc, and I was looking for a local research project. I heard that Nels Holmberg had a giant dataset about woodland restoration, so I called him and asked if I could look at it. Nels said “Sure!”. I imagined he would send me an Excel file. Instead he brought in a giant cardboard box full of yellow legal pads where he had recorded his data.

OLYMPUS DIGITAL CAMERA

One of hundreds of datasheets where Nels recorded his detailed observations.

It took a long time to digitize all of the data. There were more than 50,000 data points. But once we had it all together, this is what we learned:

After eleven years of restoration, the number of native plant species in Dana Brown Woods increased by 35%, from 155 species in 2001 to 210 species in 2012. This increase was linear. That is, the number of native species was still increasing at the end of the study. If we repeated the study today, we expect the number of native species would be even greater than in 2012.

The number of native species increased at different speeds and to different degrees in different ecological communities. In the lower and wetter forest areas, the numbers didn’t really shift very much. They jumped around but not in one direction. In the woodland areas, the number of native species increased by about 23% in the first three years and then leveled out. But in the higher and drier areas where red cedars had been dominant, the number of plants increased linearly by 36%.

Native Species Richness

Changes in the number of native plant species recorded over time in the Dana Brown Woods. On the left are overall changes for the whole management unit. On the right are changes for different ecological communities within the management unit. The management interventions are shown in gray.

The plant species that benefited from the restoration were mostly forbs and grasses. A couple of the biggest “winners” were black snakeroot (Sanicula odorata) and nodding fescue (Festuca subverticillata). There were also some “losers”: Virginia creeper (Parthenocissus quenquefolia) and spring beauty (Claytonia virginica) both declined over time. Relatively few of the species that became more common were “conservative” – i.e., dependent on intact habitat. Mostly they were more widespread and tolerant species.

IMG_0049

Co-author Olivia Hajek demonstrates a hog peanut (Amphicarpaea bracteata) – a good representative of the type of species that benefited most from the restoration. Hog peanut is an herbaceous legume that is common in many woodlands, including disturbed ones.

Our study did not include a control treatment, but counterfactuals exist at Shaw Nature Reserve (although they are becoming fewer and fewer with the excellent stewardship of Mike Saxton and many others). There are still thick patches of eastern red cedar covering remnant glades on parts of the property. Woodlands that have not been regularly burned are now filled with bush honeysuckle (Lonicera maackii), wintercreeper (Euonymus fortunei), and other invaders. And low-lying forest that has not been restored is very dark with fire-intolerant sugar maple (Acer saccharum) casting much of the shade. If we had included a control treatment in our experiment, these are probably the trends we would have found – definitely not a spontaneous resurgence of diverse native plants.

IMG_0099

Fragrant sumac (Rhus aromatica) was present at the outset of restoration and remained relatively stable.

Why does this work matter? The biggest value of this study is that it shows a relatively long-term restoration trajectory, and it does so in fine botanical detail. Many managers and scientists already have data to show that fire and tree thinning increase woodland plant diversity. This study adds another dimension. It shows how quickly plant diversity recovered. It also shows how the speed and shape of the recovery varied across the landscape. We hope that other scientists and practitioners will compare the recovery trajectories in the Dana Brown Woods to their own natural areas. To facilitate that, we have made all of the underlying data freely available online.

IMG_0029

Buffalo clover (Trifolium reflexum) is a conservative species that is present in Dana Brown Woods but was not detected in any of the survey plots.

One of the next steps for this research is to figure out how and when to re-introduce some more conservative plants. Although the Dana Brown Woods became much more diverse as it was being restored, most of the plants were early successional or generalist species. We found very few habitat specialists that cannot tolerate disturbance, which suggested to us that some of these species may have been lost from the site at some time in the past. To learn how conservative plants might be re-introduced, we have started a new experiment testing the effects of soil microbes, competition, and time since the start of restoration on the success of introduced seedlings from seven conservative plant species. In the next year or two, we hope to have new information and recommendations for restorationists looking to add more specialized biodiversity to their woodlands.

WP_20150502_004

Freemont’s leather flower (Clematis fremontii) is a restricted species occurring on dolomite glades in southeastern Missouri. Although it is present at Shaw Nature Reserve less than one kilometer from Dana Brown Woods, it has not colonized the restored glade habitats there. This photo is from Valley View Glade near Hillsboro, Missouri.

To learn more about this research, you can read the original research paper in Natural Areas Journal. Email me for a pdf copy (jlreid@vt.edu). You can also tune in on April 21 for a webinar on this work. Register here.

Cove forests on the southern Cumberland Plateau are losing trees

Rich, cove forests are losing tree species faster than sandy, upland forest, according to long-term research in Sewanee, Tennessee led by Jon Evans (University of the South), Callie Oldfield (University of Georgia), and Leighton Reid (Virginia Tech).

The southern Cumberland Plateau in Sewanee, Tennessee is a ribbon of stacked limestone and sandstone rising above the valley by some 275 m, about four-fifths the height of the Eiffel Tower. From above, the plateau’s forests stand out dark green against the surrounding farmlands and give the impression of a large, homogeneous block of habitat.

The reality is somewhat different. The forests of the southern Cumberland Plateau are botanically distinct, and they are changing differentially over time.

Dick Cove Map

The southern Cumberland Plateau near the borders of Tennessee, Alabama, and Georgia. Imagery © Google Earth 2019.

The plateau’s sandstone cap is dry and craggy. Blueberries thrive in acidic soil under a canopy of oaks and hickories. Where the soil is especially shallow, the forest opens up onto exposed outcrops with fence lizards and prickly pear cacti. Just a stone’s throw away, the cove forests are a world apart. Wet and calcareous, the plateau’s deep, dark coves are famous for limestone caves and ephemeral wildflowers. Even though they are close neighbors, the two dominant forest communities of this region share less than 25% of their plant species.

Dick Cove-Upland2

Upland forest on the top of the Cumberland Plateau, underlain by the sandstone. Photo by Jon Evans.

As part of a long-term forest change study, in 2014 we surveyed tree communities in upland and cove forests that had been previously surveyed in 1995 and 2005. Our results, published in the Natural Areas Journal, showed that upland forests maintained the same suite of tree species in roughly the same numbers, but cove forests became considerably less diverse. For example, we detected nine fewer tree species in the plots in 2014 compared to 1995. Understory trees were hardest hit – less than 1/3 of the species that were present in 1995 were still represented in the understory in 2014.

Dick cove - cove bench1

Cove forest in Thumping Dick Hollow, underlain by limestone. Photo by Jon Evans.

Being neighbors, upland and cove forests have been subjected to similar disturbances over the past few decades. For example, both forests have comparable exposure to wind storms, pathogens, and herbivores – particularly deer. White-tailed deer have become overpopulated due to the loss of their natural predators, and few tree seedlings escape their browsing. We have seen PVC plot markers chewed to the ground by ravenous deer. Our observations suggest that cove forest tree species are less resistant to these disturbances than their upland counterparts.

We speculate that some trees on the sandy uplands might be pre-adapted to the new deer browsing regime. Several upland tree species are clonal. For example, sassafras, sourwood, and chestnut oak trees can share resources with smaller seedlings that sprout from their bases or roots. The parental subsidy might help these species maintain their populations in the droughty, acidic upland soils of the Cumberland Plateau. It could also help seedlings keep growing after they have been munched by a deer.

Sassafras

Sassafras (Sassafras albidum) is a clonal tree species common in upland forests on the Cumberland Plateau. Photo by Callie Oldfield.

Clonal species are less common in the cove forest. There the dominant trees like sugar maple and tulip poplar typically reproduce via seeds. Paw paw is one of the few clonal species that grows in the cove forest, and it is also one of the few species that increased in abundance there from 1995-2014.

Leighton & Callie

Leighton Reid (left) and Callie Oldfield (right) survey tree communities on the southern Cumberland Plateau in 2005 and 2014, respectively. Photos by Jon Evans.

The southern Cumberland Plateau is regarded by some conservation groups as a resilient southeastern landscape, and indeed its variable topography and large extents of natural habitat may help many species resist or respond to new environmental challenges. However, our research highlights that the two dominant tree communities of the southern Cumberland Plateau respond to disturbances differently and may have a limited capacity to buffer one another from ongoing change.

 

For more information, see our new paper in Natural Areas Journal. To request a pdf, email jon.evans@sewanee.edu.

It’s Complicated: Trees and Ecological Restoration

Discover + Share

The best time to plant a tree was twenty years ago. The second best time is now.
-Anonymous

Addendum: That is, unless the tree will grow just fine without your help or the tree doesn’t really belong there. In that case, the best time might be never.

Planting a tree is rejuvenating. It gets you outside, it’s good exercise, and it’s often good for the planet. Really, trees give us an awful lot and don’t ask for much in return. Among their many gifts are food, shade, animal habitat, building materials, erosion control, and fuel. Trees also filter our water and suck carbon out of the air. In cities, trees collect grit and grime that would otherwise coat our lungs.

But tree planting is not the same as restoration. Ecological restoration is the process of assisting the recovery of a damaged ecosystem. Trees are integral to many ecosystems, like forests…

View original post 797 more words

Vegetation changes at Shaw Nature Reserve

CCSD scientists Leighton Reid, Matthew Albrecht, and Quinn Long are teaming up with restoration ecologist James Trager and botanist Nels Holmberg to learn how ecological restoration has affected herbaceous plant communities in an eastern Missouri woodland.

What happens to Missouri’s grasses and forbs when you remove invasive shrubs? When you return prescribed fire to a degraded woodland? How do restoration impacts differ for summer-blooming plants and spring ephemerals? For dry hilltops versus mesic hollows? These are a few of the questions that we hope to address with a long-term dataset from Shaw Nature Reserve.

IMG_0101-001

Nels Holmberg (left) and Quinn Long (right) discuss the finer points of blackberry identification at Shaw Nature Reserve.

Shaw Nature Reserve encompasses 10 km2 of woodlands and glades along the Meramec River in eastern Missouri. Missouri Botanical Garden purchased the land in 1925 when coal pollution in Saint Louis was so bad that it was killing plants; the garden decided to move its collections to the country where the air was pure. Ultimately the city cleaned up, the collections stayed in Saint Louis’s Tower Grove neighborhood, and the property along the Meramec became a nature reserve and popular hiking area.

Like other ecosystems in the Missouri Ozark foothills, Shaw Nature Reserve changed considerably during the last century. Fire, once a regular disturbance, became scarce, allowing junipers to crowd in on the glades. Invasive species, like Amur honeysuckle, spread into the woodlands and created dense, understory thickets.

blue wood aster (Symphyotrichum cordifolium)

Blue wood aster (Symphyotrichum cordifolium) – a late bloomer in the Dana Brown Woods.

Twenty five years ago, Shaw Nature Reserve began to counteract these changes through ecological restoration. Staff and volunteers cleared invasive shrubs and began to periodically burn the landscape.

In 2000, restoration ecologist James Trager and botanist Nels Holmberg designed a study to monitor restoration effects on herbaceous vegetation. Holmberg surveyed 30 transects twice per year from 2000-2012, recording the abundances of more than 360 plant species. Restoration in this area started in 2003, so the first two years of Holmberg’s transects represent a pre-restoration baseline against which we can compare data from the subsequent decade.

OLYMPUS DIGITAL CAMERA

Holmberg’s dataset contains more than 50,000 rows. Thanks to Christian Schwarz for digitizing them!

Recently, we plotted Holmberg’s transects on Google Earth. The images show clear changes since restoration began almost 15 years ago.

DBW1995

Holmberg’s transects transposed on a 1995 aerial photo of Shaw Nature Reserve – zoomed in on the Dana Brown Woods. This photo was taken in early spring before most trees leafed out. Dark vegetation is predominantly eastern red cedar (Juniperus virginiana). Holmberg originally grouped the transects into three classes based on the dominant vegetation.

NelsAug2005

Juniper clearing began in 2006. This is what the summer-time forest looked like the year before…

DBW2006

…and after juniper clearing. By 2006 the Dana Brown Woods had been burned twice with prescribed fires, and a lot of the junipers had been cut out. Compare the open/brown areas in this photo with the solid green canopy in 2005.

DBW2014

The most recent imagery, from October 2014, shows some fall color. Note that “red oak” mostly refers to upland Shumard oak, Quercus shumardii.

Our plan for 2016 is to analyze changes in understory vegetation composition over twelve years. Stay tuned for more information in this ongoing project!

Endemic Flora in the Ouachita Mountains

Some 300 million years ago, the South American plate collided with the North American continental crust. The resultant buckling formed the dramatic topography of the Ouachita Mountains, which extend from southwestern Arkansas into eastern Oklahoma, defining the southern extent of the Interior Highlands of mid-continental North America.

The fold belt topography of the Ouachita Mountains

The fold belt topography of the Ouachita Mountains

Although the Ozark region, which forms the northern portion of the Interior Highlands, has received more attention in terms of both scientific literature and public familiarity, the Ouachita Mountains have a larger number of endemic plant taxa. In total, fourteen endemic plant taxa have been documented from the Ouachita Mountains, several of which have only been described in recent decades. As a member of the Center for Plant Conservation network of botanical gardens, we work to conserve imperiled plant species in the southeastern United States through seedbanking, reintroduction, and research to better understand the ecology and life history of these species. This research ranges from experiments to understand the ecological conditions necessary to break dormancy and induce germination, to field experiments that aim to provide guidance for ecological restoration and management of the communities and ecosystems in which these taxa occur.

Scenic vista in the southern Ouachita Mountains

Scenic vista in the southern Ouachita Mountains

Ouachita mountain goldenrod (Solidago ouachitensis) is one of the rare and endemic taxa which we are working to conserve in this region. Recently, during the week of November 17th-21st, Matthew Albrecht and I traveled to the Ouachita Mountains to collect seed of S. ouachitensis. A minor snowfall preceded our arrival, bringing with it unseasonably low temperatures. The snow remained for several days on north facing slopes, which increased both the scenic beauty of the region and the difficulty of traversing steep terrain.

Collecting seed of Solidago ouachitensis with a light dusting of snow

Collecting seed of Solidago ouachitensis with a light dusting of snow

The trip was perfectly timed to coincide with the peak of seed maturation, which made for a successful collection effort. Solidago ouachitensis occurs predominantly in two distinct habitat types – mesic oak dominated forest near the summit of slopes and also mixed hardwood forest of riparian toe slopes. Several populations occur along the Talimena National Scenic Byway, where the ridge tops are dominated by a dwarf forest comprised of a near continuous canopy of gnarled, windswept white oak. Solidago ouachitensis occurs on several north-facing aspects down slope from these dwarf forest. Populations vary greatly in size, from no more than several individuals up to thousands of individuals. It appears that the most robust populations (in terms of total population size, the proportion of the population producing seed, and the reproductive output of individual plants) occur in areas with evidence of recent fire. Prescribed fire is used as a management tool in the Ouachita National Forest, which appears to be beneficial for Solidago ouachitensis. To further explore this, we’re initiating experiments to examine whether chemical compounds in smoke enhance germination.

– Quinn Long

Solidago ouachitensis with mature seed. A charred log in the background provides evidence of recent fire.

Solidago ouachitensis with mature seed. A charred log in the background provides evidence of recent fire.