Virtual field trip to the Guajira desert and the Serranía de Macuira in northern Colombia

James and Thibaud Aronson describe the natural and cultural context of a little-known area of northern Colombia, home to the Wayuu people and a microcosm of arid lands worldwide.

Colombia is one of the world’s seventeen megadiverse countries.  In a few hours of travel, one can go from the sweltering Amazonian lowlands to the snow-capped peaks of the Andes. It even has a true desert, a small peninsula called la Guajira, shared with Venezuela, which constitutes the northernmost point of South America.

For most of the last 50 years, the Guajira was notoriously dangerous, principally because of drug trafficking, but things have improved in recent years. We traveled there last month, shortly after the first big rains the region had received in several years. ​ And we found that it’s a poignant example of the plight of drylands globally and their peoples.

Guajira02_26_2019_map

The Guajira peninsula, in northern Colombia, including the authors’ itinerary.

Our trip actually began in Panama, which was part of Colombia until 1903. While much smaller, Panama is also a country of contrasts. Much of the Pacific coast used to be covered in seasonally dry tropical forest, and some fragments persist today in and around Panama City itself, while the forests of the Caribbean slope, a mere 50 km away, are much wetter. A curious switch occurs near the Colombian border, where the wet forests then extend down the Pacific coast of Colombia and Ecuador – the famous Chocó-Darien rainforest, one of the wettest and most diverse tropical forests on Earth.

Meanwhile, the seasonally dry forests continue along the 1,000 km long Caribbean coast of Colombia and give way to semi-desert and then true desert (annual rainfall < 250 mm), lined by a coast with mangrove forests, and a series of lagoons and bays where flamingos and ibises add a shock of color.

IMGP2432

Mangroves in Bahia Hundita, Alta Guajira, showing desert woodland with tree cacti (Stenocereus griseus) and various legume trees growing on the sandstone bluffs in the background.

6Z1A5797

Roseate spoonbills, great egrets, and a white ibis sharing a coastal wetland near Uribia.

As if this wasn’t enough contrast, halfway along the Caribbean coast rises the Sierra Nevada de Santa Marta, Colombia’s tallest mountain range, reaching 5,700 meters (18,700 feet) above sea level at the highest peak. It takes only about two hours to drive from its foothills, where toucans and monkeys chatter in the majestic trees, to Riohacha, the gateway to the desert.

6Z1A3879

A brown-throated three-toed sloth (Bradypus variegatus) hanging by one arm in a Cecropia tree in Tayrona National Park, at the base of the Santa Marta mountains.

Alta Guajira’s desert trees and woodlands

The Alta Guajira is arid indeed, but it hosts trees, remarkable both in their exuberant diversity and their abundance, considering the high temperatures and meager rainfall. We saw what we consider true desert canopies, such as we have described in other posts. However, no desert flora exists in isolation, and indeed the kinship to the ecosystem type known as Seasonal Dry Tropical Forest (SDTF; see map above) seems to be strong.

The dominant trees of the Guajira are species of Prosopis, Caesalpinia, Vachellia (formerly part of Acacia s.l.), Parkinsonia and other legume genera, accompanied by Bursera, Capparis relatives, Bignoniaceae, and other species common in the dry forests of Central and South America, and 3 kinds of tree cacti (Stenocereus, Pilocereus, and Pereskia), growing close together, often covered in climbing vines. In particular, it was interesting to see bona fide desert woodlands dominated by two well-known legume trees, Prosopis juliflora and Vachellia farnesiana, which are widespread and often strongly invasive in other parts of the world, but not here! Fascinating biogeographical and ecological questions abound in this poorly explored region, many of which are relevant to conservation and restoration.

Regarding  landscape ecology in the region, the vegetation is curiously like a patchwork, alternating between dense desert woodlands, nearly pure tree cacti stands, sometimes with a dense grass cover, and sometimes not, and frequent saline flats where nothing grows. In our opinion, the human element, namely land and resource use history, is paramount to understanding what one sees when travelling here and trying to ‘read’ the landscapes.

IMGP1364

Mixed patch of tree cacti and spiny legume trees with a surprising amount of grass understory. Elsewhere under similar stands, for no clear reason, there is no grass cover at all.

IMGP2305

A track of the Alta Guajira, near Nazareth, at the base of the Macuira hills where the notorious Prosopis juliflora, known in Colombia as Trupillo, is so exuberant and long-lived it forms a natural tunnel above this track.

 

IMGP1037

Prosopis juliflora colonizes newly exposed beach dunes, in areas where the shoreline is receding. Here, at Camarones, it occurs alongside Calotropis procera, a woody weed of the Apocynaceae known in English as giant milkweed, and familiar throughout the Caribbean islands, the Middle East and drylands of Africa. It survives because of its toxic milky latex where most other plants get eaten out by livestock.

Other standouts are the beautiful Palo de Brasil, Haematoxylum brasiletto, with its unusual fluted trunks and Pereskia guamacho, an enigmatic ‘primitive’ tree cactus with true leaves and one of the most exquisite tasting fruits we know. This is one of the least well-known but most intriguing of all desert trees to our minds.

IMGP1656

Typical landscape of the northern Guajira desert woodlands, with an even-aged stand of one of the several neotropical legume trees known as Brazilwood: Haematoxylum brasiletto, or Palo de Brasil in Spanish.

Despite those common names, this species is in fact only found wild along Caribbean coastlines from Colombia and Venezeula, all the way north to both coasts of Mexico. The scientific name is thus a misnomer. The most famous Brazilwood tree is another legume, Paubrasilia echinata (= Caesalpinia echinata) that once grew abundantly along the Atlantic coast of Brazil, as a large tree with a massive trunk, reaching up to 15 meters tall. Today, it’s almost entirely gone in the wild, and mostly planted in gardens and along roadsides. It was prized for the bright red dye obtained from the resin that oozes from cut branches or trunks. The dye was widely used by textile weavers in the Americas and Europe in the 17th-19th centuries. The tree also provided the wood of choice for high quality bows for stringed instruments and was widely used for furniture making as well. So important was its economic value that the country was named after it, originally Terra do Brasil (Land of the Brazilwood), later shortened to Brazil. Recently it was designated as sole member of a new genus, as part of a comprehensive revision of the entire genus Caesalpinia, carried out by an international team of experts.

It’s curious that H. brasiletto bears the same common name as P. echinata, since the two trees are nothing alike, apart from their red sap and heartwood. Little literature exists for H. brasiletto, and we are embarking on some detective work to shed some light on this puzzle. We go into detail as these are both relatively fast-growing trees with great economic as well as ecological value. They would both be excellent candidates for inclusion in ecological restoration work and are both in dire need of conservation efforts.

Wayuu: Alta Guajira’s Indigenous People

This desert also hosts a fairly large human population. The Guajira is the home of the Wayuu, Colombia’s largest surviving indigenous group and, along with the Navajo, one of the last desert-dwelling peoples in the New World. These fiercely independent people, organized in 17 matrilineal clans, were never subjugated by the Spanish, and even today the Guajira region functions mostly in isolation from the rest of the country. As we were heading well off the beaten track, we needed a guide, a 4 x 4 jeep in good condition, and a skilled driver to navigate the meandering and unmarked desert paths.

Despite an ancient history of human presence, and some periods of intensive exploitation and intervention (such as a pearl harvesting boom that took place soon after European explorers arrived), the ecological condition of the region at the landscape scale is remarkably good. Indeed, apart from the salt works in the small town of Manaure, which produce two thirds of Colombia’s salt, and El Cerrejón, South America’s largest open-pit coal mine, in the south of the Guajira, there is no major industry.

IMGP2473

Typical traditional salt works at Manaure worked by hand by local men and women just as they have for generations.

And the isolated people who dwell here – fishermen, shepherds, and weavers – are right out of a Gabriel García Márquez story. Indeed the author, most famous for One Hundred Years of Solitude, grew up on Colombia’s northern coast, speaking both Spanish and the Wayuu language, Wayuunaiki. As we traveled deeper into the desert, we traversed small settlements with simple houses made of wood and yards surrounded by tree cacti hedges.

IMGP0996

The Wayuu village of Boca de Camarones, in the south of the Guajira peninsula, showing the living hedgerows of columnar cacti produced from tall stanchions. In the background, surrounding the homes, are Trupillos, and good specimens of Dividivi Libidibia coriaria (formerly called Caesalpinia coriaria).

This third caesalpinoid legume tree, closely related to the two Brazilwoods mentioned above, is the source of another lovely red dye, derived in this case from its pods. Until recently, there was an annual festival in Camarones, in honor of this formerly major economic plant product. The tree was also used as an important source of tannins. Like Paubrasilia echinata, it deserves more ethnobotanical and biogeographical studies.

Here, as in many other arid lands, goats and sheep are important for the Wayuu people, as a source of food and social currency. For example bride price during arranged weddings, and gifts for guests attending vigils of important elders and healers, are paid to this day in heads of live goats or sheep. Historically, mules and donkeys were very common as well, but now they are increasingly replaced by motorcycles.

IMGP0993

Small children following a flock of desert-hardy sheep in Boca de Camarones. The peaks of the Sierra Nevada de Santa Marta are visible in the background.

Crown jewel of the Alta Guajira

The crown jewel of this desert, its best kept secret, is the Serranía de la Macuira, a small mountain range (serranía meaning “small sierra” in Spanish) in the northeast of the peninsula. This miniature sky island is almost impossibly lush, thanks to moisture-bearing clouds that shroud its upper reaches. They feed streams that flow year-round, and sustain many kinds of trees that grow to well over 10 meters tall.

As one climbs the slopes of the Macuira, the humidity dramatically increases and the parched lowlands, with their desert woodlands, blend perceptibly into a seasonally dry tropical forest reminiscent of those we had seen in Panama. A little-known fact: seasonally dry tropical forests are the most endangered of all tropical forest types, and those in La Guajira are worthy of much greater research, conservation, and restoration.

Climbing higher still, the mid- and upper ranges of the Macuira seem like another world. Most astonishing of all, there is apparently an abrupt transition above 550 meters, and the higher reaches are covered in true cloud forest, with mosses, epiphytic orchids, tree ferns, and dozens of tree species that otherwise occur hundreds of kilometers away! This is probably the only place in the world where cloud forest is found less than 5 km from true desert. Fortunately – from a conservation point of view, but unfortunately for us – the upper peaks of all three peaks of the Macuira are sacred to the Wayuu, and completely off-limits, to native people and visitors alike. Try as we might, we were unable to get permission to hike up there.

IMGP1967

IMGP2002

Seasonally dry tropical forest on the northeastern facing slope of the Macuira, where precipitation is much higher than in the surrounding lowlands occupied by desert woodlands.

Even though the whole Macuira is officially protected as a national park, the reality is more complicated. While walking inside the park, we encountered recently cut trees, the ubiquitous goats, and even a Wayuu man hunting birds with a slingshot in broad daylight. The beautiful continuous tree canopy covering most of the slopes stands in stark contrast to the severely eroded, nearly bare hilltops, on which stand small Wayuu homesteads. Still, the presence of clear ecotones speaks to mostly healthy landscapes.

IMGP1898

The severe erosion around a small Wayuu farm inside the Macuira National Park.

Alta Guajira’s ecological future

The pressures on the Guajira’s ecosystem health include a large mine (El Cerrejón, mentioned above), overgrazing by domestic livestock, and stark poverty facing the native people and more recent immigrants. But there are positive factors as well. There are progressive laws in Colombia related to ecological restoration. Moreover, since 2012, Colombia has a National Restoration and Rehabilitation Plans (pdf), as well as a Law of Remediation, which imposes large environmental offset payments from large-scale development projects (like hydroelectric dams) to underwrite conservation and restoration work. Moreover, the national park system, within its network of 56 protected areas, harbors populations of almost half of the 102 indigenous peoples in the country, and in the case of Macuira, this is clearly not just a paper park idea.

Still, the national park (25,000 ha in size; officially designated in 1977), operates with a skeleton staff attempting to carry out an ambitious management plan (pdf) despite an insufficient budget. Staff and volunteers provide short tours to day-visitors, and maintain some fenced-off livestock exclosure plots, where they are studying natural regeneration. Daily interaction with the Wayuu living in the park appear to be harmonious, and indeed there is a clear sense that part of the Park’s mission is to restore and protect the Wayuu people’s natural and cultural heritage. Recently, the Instituto Humboldt, Colombia’s stellar national research institute, has established permanent plots in the Macuira range as part of a series of 17 plots including all the tropical dry forest types in Colombia. In the Macuira, this work is done in collaboration with botanists from the Universidad de Antioquia, in Medellin. Furthermore, researchers at Kew, the Smithsonian Institute, and many conservation NGOs are all developing collaborations with the Colombian government to explore and help the country move forward with green development.  The Missouri Botanical Garden also has long-standing MoUs for joint research with 3 different institutions in Colombia, with bright prospects for deepening cooperation in the future.

Like many indigenous peoples around the world, the Wayuu are at a crossroads. Their language and some of their traditions are still alive and well, but others have already faded. There are few legal sources of income in the harsh desert, the ancestral Wayuu land. How will they manage in the future? What can they do to adapt?  Some, like our guide, José Luis, are trying to change mentalities, but they clearly need more help.  As throughout Colombia, there is clear and urgent need to build on the alpha-level studies already underway, and move onto applied ecology, agroforestry and land management programs, including community-based restoration programs and ecotourism in conjunction with the national parks.

IMGP2197

Our Wayuu guide José Luis Pushaina Epiayu (on the right) and Macuira park ranger Ricardo Brito Baez-Uriana (on the left), talking about birds with a local Wayuu family.

 

Advertisements

Cactus conservation and restoration of arid environments in Central Mexico

En route to attending the 4th meeting of the Ecological Restoration Alliance of Botanic Gardens Conservation International, in Xalapa, Veracruz, Mexico, James Aronson stopped off to visit Beatriz Maruri Aguilar, a recent Bascom Fellowship recipient who works as Scientific Research Coordinator at the Cadereyta Regional Botanic Garden, and her colleagues, Director Emiliano Sanchez Martinez, and Research assistants Hailen Ugalde de la Cruz and Hugo Altamirano Vázquez in Cadereyta de Montes, Queretaro, north of Mexico City. Beatriz and Hailen describe the Garden’s work conserving an endangered, endemic cactus, and an innovative restoration project.

pic1

Main entrance to Cadereyta Regional Botanic Garden

Cadereyta de Montes is close to the southern end of the Chihuahuan Desert, in the semiarid zone of Queretaro and Hidalgo. The place is relevant for biodiversity because of its number of endemic arid plants. However, today some habitats have been definitively altered and several special plants are on the brink of extinction.

One of those emblematic species, popular among succulent plant collectors around the world, is under severe threat to its survival. Worldwide growing successfully in cultivation, Mammillaria herrerae Werderm. is facing tough conditions and could eventually disappear from its original habitat. Scientists from the Cadereyta Regional Botanic Garden have done a survey which indicates that there are only a few hundred individuals remaining in the wild, that the species shows very low recruitment by seed, and that seedlings grow on rocky substrates beneath nurse plants.

pic2

Expedition day: James and Beatriz descend the slopes where Mammillaria herrerae lives. Photo by Hailen Ugalde de la Cruz.

Observing the remaining individuals is a shocking experience that moves to reflection.

They look small and fragile, but these geometric, almost spherical, plants are a beautiful example of the precision of nature, which gives each organism the characteristics it requires to survive in its natural habitat.

pic4

The beautiful Mammillaria herrerae Werderm., also known as “golf ball cactus” or “bolita de hilo” (small ball of thread). Photo by Beatriz Maruri Aguilar.

Densely covered with white spines and half-buried in the rock, Mammillaria herrerae hides its presence in the limestone soil. Its densely-distributed spines also help harvest fog at this elevation, where atmospheric moisture can condense. In an arid region like central Mexico, such adaptations provide species with strategies to reach the vital element.

pic5

A small group of Mammillaria herrerae struggle to persist on the steep slope. Photo by Hailen Ugalde de la Cruz.

Their permanence wouldn’t be menaced, but infrastructure development has reached them.

pic6

The pipes of the “Acueducto II” Hydraulic system climb more than 1200 meters to reach an elevated point from which it carries water by gravity to Queretaro City. Photo by Beatriz Maruri Aguilar.

pic7

In such a challenging environment, the construction of this infrastructure has severely damaged the landscape where Mammillaria herrerae lives. Photo by Beatriz Maruri Aguilar.

pic8

As the aqueduct was constructed over several years, several efforts were conducted to relocate bigger native plants. Photo by Hailen Ugalde de la Cruz.

Efforts will continue. The Cadereyta Regional Botanic Garden team will conduct a 2-year demographic study, study the floral biology of the species, and describe plant community biodiversity at the specific distribution points. Stock propagation at the Garden will continue. The path is being prepared to, one day, return these jewels to their place in their natural environment, and to protect them better in situ.

fieldpic

Hailen Ugalde (left), Hugo Altamirano (center), and Beatriz Maruri (right), the staff of the Cadereyta Regional Botanic Garden, visit a remnant population of Mammillaria herrerae . Photos by James Aronson (left) and Hailen Ugalde de la Cruz (right).

pic10

The landscape around M. herrerae’s natural habitat. The mountain in the background is the southern facies of the Sierra del Doctor, part of the Sierra Madre Oriental. Photo by Hailen Ugalde de la Cruz.

fieldpic2

Some of the globose companions of Mammillaria herrerae Werderm. Left: Astrophytum ornatum (DC.) Britton & Rose; Right: Mammillaria parkinsonii Ehreb. Photos by Hailen Ugalde de la Cruz.

“An unusual model of assisted ecological restoration”

At first sight, the arid scenery of the surroundings of the small city of Cadereyta, in Queretaro, Central Mexico, could transport us to past times.

fieldpic3

Panoramic view from Cadereyta de Montes, and the ancient flavor of the streets. Photos by José Belem Hernández Díaz.

However, this semi-urban and semi-rural zone combines the features of ancient Mexican villages and landscapes with the unmistakable signs of the transformation that progress usually brings.

The peripheral landscape of Cadereyta de Montes (14,000 inhabitants) is showing signs of transformation. The urban area is gradually displacing the agricultural parcels and the native flora, giving rise to an interface formed of irregular patches that combine new houses and small agricultural parcels. A third type of ground, neither agricultural nor urban, is also present. This type of land is isolated from wild and agricultural areas, and can degrade easily.

pic13

The polygon of the Cadereyta Regional Botanic Garden, highlighted in yellow, in the vicinity of Cadereyta de Montes. Map prepared by Beatriz Maruri Aguilar.

In additional to its formal collections and buildings, the Cadereyta Regional Botanical Garden maintains an area that exemplifies the conditions found in much of the surrounding semi-arid region. Xerophytic shrub-dominated matorral is the main vegetation type which is generally highly degraded by human activities over the last decades, and surviving remnants in good ecological condition are only found quite isolated from agricultural areas. The vegetation comprises an interesting assemblage of native species in the Asteraceae, Poaceae, Solanaceae, Verbenaceae, Euphorbiaceae, Cactaceae, Fabaceae and other families, many of which are struggling to survive within large patches of invasive grasses.

pic14

A view from the top: looking down at degraded land to be managed by the Botanic Garden. Photo by Hailen Ugalde de la Cruz.

pic15

Another view from the top: Hugo, Beatriz, and James observe the transformed landscape of Cadereyta de Montes from one of the Garden’s balconies. Photo by Hailen Ugalde de la Cruz.

In this area, the Botanic Garden is working on restoration models that will be of interest – and direct use – to local landowners. It is an unusual model of assisted ecological restoration, with an agroforestry approach. The core idea is that through the implementation and monitoring of native vegetation and economic plant mosaics, it should be possible to combine conservation of biodiversity, sustainable development for small farms, and ecological restoration of degraded lands.

The pilot project will have two different types of parcels for comparative and demonstration purposes. One type will be built following an ecological approach to restoration, using only native plant species; the other will have an agroforestry approach, combining a group of native species with some selected edible/useful species. The area of the plots where the two strategies will be implemented will be prepared by removing an invasive species of grass (Melinis repens Willd. (Zizka), or “pink grass”). The agroforestry model will also generate useful products, such as agave leaves, which are used in the region for several purposes including to make pulque – an ancient beverage made by the fermentation of the agave sap, highly popular in this region. This model will also include aromatic plants – such as the asters Matricaria chamomilla L. and Calendula officinalis L. and the mint Salvia sp., as well as other useful plants as the euphorb Jatropha dioica Sessé, “sangregado”, commonly used as an ingredient in shampoos and formulas against gray hair.  These human uses are valuable in areas like this, where some human populations are suffering from an elevated degree of marginalization. The Cadereyta Regional Botanical Garden has developed propagation protocols of native species, and part of the stock produced will be used in the model described.

fieldpic4

Some of the stock of native species produced at the Cadereyta Regional Botanic Garden. Photos by Beatriz Maruri Aguilar (top) and Hugo Guadalupe Altamirano Vázquez (bottom).

At Cadereyta de Montes, some areas need a helping hand to keep the landscape in good shape. Other places hide extremely valuable living treasures that are currently struggling for survival. The Cadereyta Regional Botanic Garden is working every day to contribute to the conservation of the highly remarkable flora of the southern end of the Chihuahuan Desert, as well as to offer sustainable solutions for landscape use in a transforming environment. This way, the Garden intends to become an active participant for the achievement of Mexico’s goals for plant conservation.

South Africa 3 | Town and country: aiming for ecological restoration at the landscape scale

James and Thibaud Aronson offer their third photo essay from South Africa, highlighting FOSTER, a dramatically successful community-based restoration program in the Eastern Cape, aimed at eradicating an invasive Australian acacia, and reducing urban wildfire risk, and a private restoration program at Kaboega Farm, situated in a megadiverse landscape of extraordinary conservation and educational value.

The Republic of South Africa is rightly famous for its 22-year old Working for Water program, WfW, and offshoots such as Working for Wetlands. These government-funded programs aim at restoring both natural and social capital, which are clearly the wave and the way of the future. They are also increasingly working with NGO implementers, private companies, and landowners in the Karoo, as we highlighted in two earlier posts (here and here). Teams, partnerships, and networks are essential here, given the complexity of the landscapes – both biophysical and political.

To close our trip in South Africa, we traveled to Cape Saint Francis, on the coast of the Eastern Cape, where our friends Richard Cowling and Shirley Pierce, who have lived there for more than 20 years, long ago founded a restoration project they dubbed FOSTER (short for Friends of the St Francis Nature Areas).

Richard, a top academic, communicator, and world expert on the ecology, biodiversity, and landscapes of South Africa has also worked closely with the WfW government programs elsewhere in the country, not only in the fynbos (the mega-diverse shrublands of the mediterranean-type climate region of the Cape) but also the karoo and subtropical thicket (on which, more below).

photo-1-r-cowling-and-s-pierce

Richard Cowling and Shirley Pierce-Cowling in their adopted habitat, St Francis Bay. 2013.  

In and around Cape St Francis, and St Francis Bay, one of the main issue is Acacia cyclops (known in South Africa as rooikrans), one of many fast-growing acacias intentionally introduced from Australia 150 years ago for sand dune stabilization.

In 1994, Richard and Shirley took up the challenge of developing a conservation plan and implementation strategy for consolidating 230 ha of municipal land and existing protected areas into a network that would sustain – among other things – faunal movement. More than 50% of this was densely invaded with rooikrans; only 38 ha was officially proclaimed a nature reserve. It was a slow process. Rooikrans grows quicker and taller than the native plants. But they had a very strong motivation. Indeed, “as a result of its greater biomass and more flammable foliage, rooikrans increases fire hazard by several fold relative to uninvaded fynbos” says Richard.

Over 20 years, they achieved near total success in removal of seed-bearing alien plants through the generous funding from the World Wide Fund (WWF) and residents’ donations, but only on the 132 hectares of public lands where they could work, often with the enthusiastic help of school groups and volunteers who learned much along the way.

photo-2-apr-16-foster-fire-prevention-work

FOSTER restoration workers conducting follow-up removal of the alien invasive rooikrans, Acacia cyclops, in the Cape St Francis nature reserve. Photo. R.M. Cowling.

photo-3-children-1

A learner from a local school enjoying the leaves of Brunsvigia gregaria (Amaryllidaceae) during an excursion organized by FOSTER. Photo. R.M. Cowling.

 

 

photo-4-brunsvigia

Brunsvigia gregaria in bloom; this species is popularly known as candelabra flower.  Cape St Francis, Apr 7, 2016.

But there were hundreds of hectares more to clear, both on public and private lands around the town. Then, in late 2012, a fire swept through, leaving severe damage and a wake-up call.

By that time, WfW was ready to help with restoration on private lands, provided that landowners contributed to the effort. The help from WfW and others much expanded FOSTER’s reach, and in only four years, some 1000 hectares of rooikrans were cleared from private lands in the area.

This of course dramatically reduced the township’s vulnerability to wildfire damage. As proof, when another massive wildfire swept through the area in January 2016, only three houses were destroyed. Notably, all three belonged to owners who had refused access to WfW workers seeking to eradicate rooikrans.

Other communities along the coast have taken notice and hopefully will follow the example of Cape St Francis.

Second landscape example: Kaboega farm

Finally, following Richard’s advice we drove two hours inland from Port Elisabeth, not too far from St Francis Bay, to visit a truly remarkable place where four different ecosystem types meet and intermingle in a property of only 6550 hectares: 1) fynbos, 2) the karoo desert, here at its southernmost limit, 3) the northernmost temperate rain forest fragments of the South East, of which the only important remnants are found in the Knysna region, and 4) subtropical thickets.

photo-5-podocarpus

Outenieqwa-geelhout, or small-leaved yellowwood, Podocarpus falcatus. Outstanding specimen of the relict population growing near a perennial stream at Kaboega Farm.

What South Africans call subtropical thickets are in fact a remarkable tapestry of vegetation types, with as many as 116 distinct variants (Cowling et al. 2005). Of particular interest here is the so-called spekboom-dominated thicket, characterized by the spekboom (Portulacaria afra).

photo-6-old-spekboom

Fully mature spekboom, one of the largest individuals known

Spekboom-dominated thicket once flourished on approximately 1.4 million hectares (3.46 million acres), but today it occupies barely one-seventh of its former area. “The remainder has been degraded by over-exploitation, mainly through injudicious farming with angora goats……” (see the report Investing in Sustainability). However, spekboom is an extremely hardy succulent tree, remarkably fast-growing and readily propagated from cuttings, or even large stancheons.

This makes it attractive for large-scale restoration work. Indeed, it has been the focus of much attention from Working for Woodlands, another member of the Working-for family of government restoration programs. The manager and co-owners of Kaboega Farm, Ian and Sandra Ritchie, stopped all agricultural activity on their land 20 years ago, to allow the land to recover from an estimated 135 years of over-grazing by small livestock. They live instead by hosting visitors, including succulent plant lovers, drawn to this hotspot of Haworthias, and university groups led by Richard Cowling. Among other recent discoveries, Cowling and co-workers have shown that subtle difference in community-level frost tolerance can determine the boundaries between tightly packed biomes at Kaboega, where diversity is sky-high despite an average rainfall of just 300 mm per annum and frequent, extreme droughts.

photo-7-spekboom-cutting

Spekboom cuttings struggling to get going

Furthermore, Ian and Sandra Ritchie are attempting to restore swathes of spekboom thicket at strategic spots on their farm, as a part of an ambitious large-scale program with support of Working for Woodlands.

They plant spekboom cuttings, which over time create an enhanced micro-environment in an otherwise harsh and difficult environment for young plants, and thus try to kick-start the regeneration of the habitat, biological community, and ecosystem. Furthermore, spekboom traps large amounts of CO2, and the general hope is that carbon credits can help finance large-scale restoration in the future. In the meantime, this is a remarkably attractive destination for nature-lovers.  In addition to the flora and landscapes, giraffe, kudu, and other game are added and allowed to roam free for the pleasure of visitors (and the owners). When numbers grow too high, however, there is a risk of exceeding carrying capacity, and some animals are captured for resale to other land-owners. This provides an additional income flow as game ranching linked to tourism and recreational hunting is increasingly popular in the region.

photo-8-giraffes

Portion of a thriving population of 28 South African giraffe or Cape giraffe (Giraffa giraffa giraffa) at Kaboega Farm. While some argue that giraffes are not native to the area, nearby millennial cave paintings indicate the contrary.

At this remarkable farm, science-based conservation and restoration are making progress in an attempt to enhance biodiversity conservation, tourism revenues, and ecosystem services of all kinds. Clearly, spekboom planting is not an all-in-one solution; for jumpstarting restoration and assisting regeneration in a complex landscape and land tenure situation like this one, where temperate forests, fynbos, thicket, and karoo shrublands all occur and interact, a landscape perspective on the challenges of ecological restoration is essential. We’ll be posting more on this challenge in the future.

South Africa 2. Toward a Restoration Culture? Good news from the Karoo

In this 4th post from southern Africa, James and Thibaud Aronson report on a pioneering, science-based restoration project, the associated private restoration company, and also a nature reserve, all founded by one pair of scientists in Prince Albert, Western Cape province, South Africa.

Last October, posting from SW Australia, we reported on Gondwana Link and some of the activities of the Australasia chapter of SER. These are just two of the thousands of independent non-governmental groups of people working for joint environmental and social change around the world, as celebrated in Blessed Unrest, Paul Hawken’s 2007 best-selling book dedicated to the “unnamed movement” to reimagine our relationship to the environment and one another. After a year and a half researching our book on arid and semi-arid land trees, and ecological restoration projects and programs in the world’s drylands, we still like our name for that “unnamed movement” Hawken referred to, namely a restoration culture for the 21st century.

Opportunities for grassroots or combined bottom-up – top-down efforts and synergies abound in South Africa, with its outstanding research, technology, and capacity-building from academics, think tanks, not-for-profit organizations, and small companies offering restoration services and counsel. In our last post, we described a few Working for Wetlands programs and the participation of SAN Parks (the body that governs South African national parks) developing new ways to restore natural capital and social capital at the same time. Here we move to the vast central drylands of southern Africa, known very broadly as the Karoo.

As compared to other inland arid regions, landscape complexity here is enormous and, remarkably, ecotones, a.k.a. frontier zones are largely visible, if not intact.

photo 1

A klipspringer (Oreotragus oreotragus) in the Swartberg, near Prince Albert. This small antelope, which occurs throughout much of sub-Saharan Africa, is unusual in that it walks on the tips of its hooves, an adaptation to its rocky habitat.

This huge inland semi-desert has at least four sub-regions, and borders to the southeast an archipelago of more than 100 recognized types of subtropical thicket, a plant formation forming a key transition zone, in ecological and evolutionary terms, intermediate between forest and savanna. According to plant ecologist Prof. Sue Milton and ornithologist Dr. Richard Dean,  the archeological and historical evidence indicate that the Karoo has been largely treeless for millennia. Trees are mostly prevented from growing in the Karoo, not only by the aridity (<200 mm precip./year), but also by shallow soils and cold winter temperatures. The Karoo was prehistorically grazed by nomadic ungulates that were hunted by hunter-gathers (San or Bushmen) and by transhumant pastoralists – the Khoe-khoe. Yet, a huge change came about when European colonization in the 18th century brought wire fencing, deep drilling and wind pumps for extracting underground water. As Sue and Richard put it, “combined with a large demand for wool in Europe, this led to a boom in sheep farming and the development of rural villages, mostly dependent on ground-water.”

 

Map

Southern African biomes, highlighting the large extent of the Karoo (yellow & brown), and the two sites we visited: Prince Albert and the Plains of Camdeboo. Modified from: http://www.plantzafrica.com/vegetation/vegimages/biomes800.jpg 

We traveled to Prince Albert, a small town in the Karoo, where we met up with our old friends and colleagues Sue Milton and Richard Dean, who are the co-owners of Renu-Karoo Veld Restoration and founders of the Wolwekraal Conservation and Research Organization, a unique research site Sue and Richard acquired in 2007, very near the edge of this isolated town. After nearly 40 years of hard work as international researchers and teachers, Sue and Richard decided to focus their considerable energy for the remainder of their careers to their town, and a community-based restoration and revitalization program for the Karoo. Unlike many NGOs in the “restoration movement” theirs is firmly grounded in science. Prior to launching Renu-Karoo, when they first moved to Price Albert, they continued teaching part-time in Cape Town – a full day’s drive away, and ran the Tierberg Karoo Research Station, a long-term ecological research site nearby, for many years. They have also written or edited the major ecological textbooks on the Karoo, both for basic researchers and managers. And indeed, it is a complex area in need of serious restoration work.

The plant nursery is a key component for all of Renu-Karoo’s activities, producing indigenous Karoo plants and plugs for landscaping and restoration. Availability of indigenous plants in the village has also gradually led to increased popularity of water-wise gardening and to an awareness of local plant diversity.

photo 2

Sue Milton and Richard Dean surrounded by native and ornamental plants at the Renu-Karoo nursery.

photo 3

One of the nursery’s 10 employees beginning the day with a round of watering.

As Sue and Richard explain:

“……the vast plains of the Karoo, the wooded drainage lines, the ancient gnarled trees of the dunes and mountains, and the elusive wildlife have been damaged by poor agricultural practices. The area is also currently threatened by development of solar and wind energy generation facilities, and uranium and gas mines that could convert the quiet Karoo into the ‘power factory’ of South Africa. A combination of conservation, education, and continuous active rehabilitation will be needed to enable future generations of people to benefit economically as well as recreationally and scientifically from this rocky and glorious desert landscape.”

When Sue and Richard established Renu-Karoo a decade ago, their goal was to grow and supply Karoo shrub and grass seeds and to provide consulting services on how to re-establish or “repair” Karoo vegetation. Through trial and error, research by students and interns, collaboration with other companies and not-for-profit organizations, and follow-up surveys of restoration and rehabilitation projects, they have produced valuable knowledge, made available both informally and in scientific publications. Additional services, such as contract growing of plugs and plants of never-before propagated veld (the South African name for the sparsely vegetated landscapes typical of the Karoo) plants have added to the interest and capabilities of the business. They also provide free environmental classes and natural history talks and walks to school children and adults. They are truly global citizens working locally to build a Restoration culture in their home, the Karoo.

As part of their work to advance the movement, and raise the bar in restoration and management work, Sue and Richard’s consulting work takes them to businesses and private farms throughout the Karoo. From Prince Albert, we traveled north- east, to visit one such place, the Plains of Camdeboo Nature Reserve, a privately-owned property on the edge of the Karoo.

photo 4

A male vervet monkey (Chlorocebus pygerythrus) feeding in an Acacia, at Camdeboo National Park.

This nearly 9000-ha property once encompassed three game farms, which were severely overgrazed for a century, if not more. The properties were acquired by Vincent Mai, a South African who lives and works in New York City, and his wife Anne. They wanted to help preserve a piece of the Karoo where Vincent had grown up.

As it was clear that overgrazing in the past had seriously damaged the land, a South African conservation organization, the Wilderness Foundation, was invited to help. For the past six years, this foundation has been carrying out restoration work on the reserve. Their main focus is on eroded and impoverished soils, and they have undertaken a range of approaches, from grazing native Zulu cattle, to using agave stems and hay to block erosion gullies. A number of mammal species were also reintroduced. Angus Tanner, the indefatigable manager, showed us the range of their work on the reserve. Money and manpower is limited, and there are still many obstacles, but they are making great strides. They rely on Renu-Karoo for advice and seeds and technical advice. They are also reaching out to cooperate with the nearby township and their neighbors. Stitch by stitch, and farm by farm, the restoration culture is spreading in the Karoo.

photo 5

Traditional Zulu cattle in the Plains of Camdeboo Nature Reserve. They both break up compacted soil and fertilize it as the managers move them around the property.

photo 6

Two adjacent erosion gullies at the Plains of Camdeboo. The one on the right was plugged with a fence gabion and agave stems, in order to slow water flow and trap sediments. The gully on the left was not treated. A year later the difference between the two speaks for itself.

South Africa 1. Restoring natural and social capital in Namaqualand

James and Thibaud Aronson post the third of four photo essays on their recent field trip to Namibia and South Africa.

As soon as we crossed over the border from southern Namibia into northwestern South Africa, it was clear that we were looking at a whole different story. We were now in the driest part of South Africa and one of the most sparsely populated. Also, Namaqualand – a winter-rainfall desert of ca. 50,000 km2 – is one of the biodiversity hotspots of the world. The area is well known to tourists for the few weeks in August-September (the southern winter), when hundreds of plant species, benefiting from the winter rains, put on an incredible floral display and tapestry of textures and colors, down below your ankles.

DSC08644 pse

A rich community of toe-high succulents endemic to saline quartz patches . This photo was taken at Douse The Glim, not far south of Garies in southern Namaqualand. Many endemics of the Mesembs (Mesembryanthemaceae) occur here, including the sunken “Silver skin”, Argyroderma delaetii,  Cephalophyllum spissum, and “Redbeads”, Sarcocornia xerophila, a cousin of the cosmopolitan Salicornias. Identification of plants: Sue Milton and Richard Cowling, both of whom we will meet in the next blog post.

 

 

09_Argyroderma delaetii 0048 (1)

Argyroderma delaetii, a dwarf, sunken ‘silver skin’, of a genus restricted to the Western Cape, South Africa, in the Knersvlakte Nature Reserve . This photo was taken by Sue Milton in 2014, a much wetter year  than 2016.

All in all, apart from natural history buffs, botanists, and conservationists, not much attention is paid to this poor, rural area. In a nutshell, the rapidly exploitable resources that could be had – copper, timber, and the like – are now long gone. What is left is – to speak bluntly – a lot of poverty and a lot of land degradation. And a lot of biodiversity: indeed the Succulent Karoo region of Namaqualand and southern Namibia is one of the biodiversity hotspots of the world.

We met with some of the people making a difference there, working with South Africa’s most iconic environmental program, the Working for-family of government-funded programs, working together to restore natural capital and social capital at the same time.

DSC08525

Sheep grazing on  abandoned crop land in Namaqualand, near Leliefontein.

The Western Cape, South Africa has had a tradition of rather damaging sheep farming for centuries. But the country as a whole has also had a proud tradition of nature conservation for over a century, which is a lot more than most countries can boast.

However, what is  even rarer is that ecological restoration has been part of the national vocabulary for a generation. A game-changing initiative that moved the country to the next level was a government program launched in 1995, called Working for Water, or WfW.

South Africa was faced with two metaphorical birds. On the one hand, approximately half of its population lived (and unfortunately still does) in poverty. On the other, several invasive non-native tree species had taken over many of the country’s waterways, outcompeting native species, choking river beds, and draining the water tables.

Working for Water was the stone. Every year it hires some of the country’s poorest people –  38,000 in 2015 –  in rural areas in all nine provinces and employs them to remove those noxious woody species. Since its inception, the program has spent hundreds of millions of dollars and provided desirable jobs near home each year. The benefits to people are in fact multiple. Workers are provided with both an income and on-the-job training and capacity-building, with some going on to start their own companies, providing ecological restoration services to private landowners. They also acquire an esprit de corps  and pride in their achievements.

With the same ‘stone’, over 2 million hectares, mostly along water courses, have been cleared of invasive trees and water supply has been notably increased for the associated communities. Finally, the large amounts of timber and vegetable biomass harvested from the invasive trees are used to produce eco-furniture, which is then sold to help finance the program. Research is under way to find methods for producing biofuel from the woody weeds as well as to improve the ecological impact of the effort.

DSC08616

The small town of Garies, southern Namaqualand. The riverbed is completely dry, but there is enough moisture in the soil to support what may look like natural riparian vegetation. In fact, not a single tree is native. Instead they are Mesquites (Prosopis hybrids) from South America, Salt cedars (Tamarix hybrids), and Australian Wattles (Acacia karroo,  A. cyclops).

DSC08569

The Australian wattle (Acacia cyclops), one of the worst invasive trees in various habitat types in South Africa.

WfW now oversees over 300 projects across South Africa, and its success has led to the establishment by successive government administrations of several other programs, such as Working on Fire, Working for Wetlands, and Working for Woodlands. The goals are ambitious and together this ‘family’ of Working for- programs exemplifies the emerging understanding that ecological restoration can be a bridge-builder between long-term conservation efforts, and sustainable socio-economic development goals. At a time when protected areas are menaced worldwide by dubious government cop-outs on protected areas, South Africa is a refreshing exception that deserves praise and celebration.

Thanks to introductions set up by our friend Dr. Christo Marais, the number 2 man of WfW, we had a chance to talk to Ronnie Newman, Amanda Bourne, and Halycone Muller from Conservation South Africa (CSA), who work in Namaqualand on restoration projects, in close liaison with SAN Parks (the body that governs South African national parks), and through financing of Working for Wetlands.

DSC08175

From left to right, Amanda Bourne, Ronnie Newman, and Halcyone Muller at CSA offices in Springbok.

SAN Parks and CSA use funding from a new programme under WFW called Land User Incentive Programme, to hire people to restore degraded rangelands.  CSA and SAN Parks are thus implementing agents for Working for Wetlands in this arrangement, something new in the history of the Working for- programs. The focus of this trio here in Namaqualand is to repair erosion gullies, called “dongas” in southern Africa. These are very often a result of over-stocking and overgrazing by domestic livestock and get continually worse if left unattended. Thanks to this government-funded effort,  workers build beautiful gabions and other structures to slow water flowing downhill, catch sediments and eventually fill the gullies. Most of the gabions are made with metal baskets, or simply dry stones carefully assembled by skilled workers to make low but sturdy walls. However, in some cases, larger gabions are made out of concrete. As Amanda Bourne put it,  “this is about supporting the people who live and work on the land to restore and better manage it.  They are paid at a supplementary rate to undertake restoration on their own land, which will directly benefit their other (mostly agricultural but not only) activities.”

DSC08309

Working for Wetlands workers building a series of stone retaining walls, near Kamieskroon. In small rivulets like this one the metal baskets of typical gabions are not easy to use and are not deemed cost-effective.

A week later, in Cape Town, we met up with Christo Marais, and with Sarah Frazee, the head of CSA. She told us that they aim at working at critical spots upstream of water points of importance to local communities whose livelihoods are largely dependent on sheep grazing. CSA also provides veterinary services at no cost to participating farmers, and tries to persuade them to reduce their herds and flocks to avoid over-stocking, especially in drought years like the current one. As Sarah put it, 80% of the biodiversity in Namaqualand is associated with wetlands, which makes focusing on their restoration important from a conservation perspective. But, as more broadly throughout South Africa, public-private efforts like this one can effectively address biodiversity, water supply, land erosion, as well as poverty and related social issues at the same time.

From a classical economics perspective, however, ecological restoration work in arid lands is slow, and often hard to justify, since the value of the land for production purposes is so low. However, not just here in the Western Cape, but throughout South Africa, the multiple goals of the Working for- program are being pushed forward and steadily refined.

There has been frequent criticism of the programs and not without cause. In particular, monitoring has not been implemented as well as could have been hoped, though the program has continually improved since its inception, both scientifically and in terms of its impact on ecosystems and people. It will be a long battle to achieve all of its goals, but despite its flaws, it remains one of the absolute best examples worldwide of programs that combine restoration of social and natural capital.

DSC08453

Six months after the building of the stone walls near Lileifontein, complemented by brushpacking to help build up organic matter, things are looking pretty good.

We close with a mention of the fabled triple bottom line – the holy grail of progressive governments. How to achieve social, ecological, and economic benefits with a single program? Next steps in improving the work of the Working for- programs, according to  Christo Marais, should include: 1) still greater investments in education, capacity-building and outreach to bring all of South Africa’s society on board with the restoration movement, and 2) galvanizing private investment in restoration. The introduction of implementing agencies like SAN Parks and CSA should help with both.

In our next two blogposts, we will report on what some private landowners and three wonderful NGOs, including RENU KARROO and F.O.S.T.E.R. are doing in the Nama Karroo and Thickets biomes.

Namib 2: Large wild animals, fences and farming (with good news about education)

James and Thibaud Aronson post the second of four blogposts on their recent field trip to Namibia and South Africa.

Africa is famous for its megafauna. Most foreign visitors, who only ever see them on safaris inside protected areas, may think that Africa has managed something every other continent has failed at: a harmonious relationship between people and entire trophic chains including large animals. In fact, many if not most interactions between humans and large animals in Africa, just as elsewhere, are conflictual and complex. Nothing illustrates the problem better than fences.

A legacy of European agricultural practices, long fences have become ubiquitous in Africa. They primarily serve to delineate property, control the movements of livestock, and in some cases limit the spread of epidemic diseases such as foot-and-mouth disease and bovine TB, and their spread to and from wild animals such a wildebeest and lions.

DSC07079

A typical small livestock herd in the Pro-Namib.

There are also the other kind of fences, the ones around protected areas, which often serve as effective protection for wildlife.  However, there is no doubt that livestock and veterinary fences have had and still have severe impacts on wild animal populations.

In particular, large mammals tend to range widely in search of food or water. Fences severely restrict their movements, with dramatic effects on populations in drought years. And mammals aren’t the only ones affected: large birds such as bustards suffer lethal collisions with power lines and fences, and tortoises are sometimes killed by electric fences.

IMGP7936

The amazingly camouflaged Rüppell’s bustard (Eupodotis rueppellii), which is endemic to the Namib. Like other members of the bustard family, it occasionally collides with fences.

In Windhoek, we met with Dr. Chris Brown, chairperson of the Greater Fish River Canyon Landscape (GFRCL), a mosaic of diverse properties, from private reserves to working cattle farms united in an association, whose working motto is “What can we do better together?” It is one of five such associations in Namibia today that are part of the NAM-PLACE project, started by the Ministry of Environment and Tourism, and now supported by the United Nations Development Program.

Dr. Brown is also a director in a Namibian company, Gondwana Collection.  Chris told us “We have a triple bottom line approach to business, with both environment and social investment playing central roles.” The strategy is to buy land in marginal, overworked farming areas, “re-wild it” by taking off the livestock and taking down the fences, and then reintroduce indigenous mammals and reinforce populations that have dwindled. Next, they build lodges to attract medium- and high-end tourists interested in seeing wild nature. Their largest property to date – among 14 throughout the country – is a private, protected area of 130,000 ha on the east side of the Fish River Canyon, which is the largest canyon in Africa.

DSC07581 canyon

The Fish River canyon. The river only flows like this after heavy rains.

DSC07314

An Aloe dichotoma (Kokerboom in Afrikaans, or Quiver tree), one of the few trees in the southern Namib. In the past, Bushmen fashioned quivers for their arrows from the soft branches, hence the tree’s common name.

We were fortunate enough to spend two nights at one GFRCL partner’s lodge, a 40,000 ha reserve on the western rim of the canyon. This remarkable landscape has been inhabited by humans for millennia, as illustrated by the tools and rock engravings still found throughout, but ill-adapted sheep farming, along with the eradication of many species by white settlers over the last 150 years, had a massive impact on the landscape, which is only now beginning to heal.

DSC07890

‘Pecked’ rock engraving and associated stone tools near the Fish River Lodge.

Through Chris Brown, we also met Nils Odendaal, CEO of the NamibRand Nature Reserve, which is part of the Greater Sossusvlei-Namib Landscape, another of the five current NAM-PLACE projects. Nils was upbeat, citing serious prospects for addressing conservation and human well-being issues simultaneously. This group focuses on the Pro-Namib, the transition zone between the arid Namib and the more mesic escarpments to the East. Much of the land there was given to white South Africans after World War II as a reward for fighting in the war and for voting for the South African National Party. However, after two generations of unsustainable sheep grazing on these already nutrient- and moisture-poor lands, the area became known as the ‘bankruptcy belt’, when farms began to fail one after the other in the 1970s and 1980s. In 1982, a Namibian businessman bought up a large tract of land and made it into a nature reserve. From this initiative, NamibRand has expanded and now includes 202,000 ha, comprising several properties linked by a common constitution that stipulates, among other things, the removal of internal fences. High-quality, low-impact tourism at ‘ecolodges’ built on concessions inside the reserve provide part of the funds for its conservation activities and “sustainable utilization of its resources”.

DSC07045

A typical NamibRand landscape. Like most of the country, it has suffered a 4-year drought, which may now finally be breaking.

During our journey, we were able to stay one night at the flagship ecolodge, whose revenues help support an environmental education and sustainable living center called NaDeet (Namib Desert Environmental Education Trust), which aims to contribute to the hugely important task of teaching and capacity-building.

The pro-Namib is of critical importance for animals moving out of the Namib proper during droughts. Therefore the reserve is working on an agreement to take down part of its fences on its border with the massive Namib-Naukluft National Park, allowing mammals such as gemsbok to reach the highlands in times of drought.

IMGP8122

The gemsbok (Oryx gazella), is perhaps the most characteristic large mammal of the southern Namib, and one of the most supremely adapted ungulates to desert living. Despite the drought, about 2000 of them thrive on the reserve.

In sum, these are two remarkable initiatives in two of the driest parts of Namibia. Both focus on large wild animals and high-end tourism. Neither has any direct support from the government, and they both are in difficult, arid lands. On the other hand, the very low human populations limit the potential for social conflict so common around conservation areas elsewhere in Africa.

Unquestionably, one major priority for Namibia is more and better environmental education, in classrooms and, above all, outdoors. Both GFRCL and NamibRand undertake detailed monitoring of the wild animals for which they are the stewards and defenders. They are also stellar communicators for wildlife and nature conservation through all their activities and presence on the internet. But what about training in the science and practice of ecological restoration?

As mentioned in our previous post, we were able to visit the Gobabeb Research and Training Center, in the central Namib, as we noted in our previous post. This Center has been operating continuously for over 50 years, and has produced a large body of research on many facets of the Namib, including hydrology, geology, paleohistory and of course ecology. Since 2012, it houses the NEMRU (Namib Ecological Restoration and Monitoring Unit), headed by Dr. Theo Wassenaar. This group has been doing research on restoration of arid lands in the country and training Namibian students, and lobbying for more research and training in restoration ecology at various universities in the country as well. The Gobabeb Training and Research Internship Programme (GTRIP) a five-month field course now in its seventh year. It is intended for young Namibian scientists interested in the fields of conservation, land and ecosystem management and ecological restoration. Under the guidance of researchers and staff, students have the opportunity to design and implement independent research projects that should “contribute to Namibia’s ability to manage and restore degraded ecosystems”. Posts from the GTRIP 2016 trainees are well worth looking at. Hopefully, this generation of Namibians will be the one to make the difference.

One obvious source of inspiration should be its neighbor, South Africa, which has been doing world-class restoration for over two decades. We spent three weeks on the other side of the border, meeting some of the key people and visiting cutting-edge restoration projects, as we’ll discuss and illustrate in our next two posts.

GTRIP2016

This year’s GTRIP students at the Gobabeb Research and Training Centre : Mathias Mwaetako, Fransiska Otto, Ailla-Tessa Iiyambula, and Kauna Kapitango, taken on the dunes south of the Kuiseb River. 15 February, 2016. Photo: Meg Schmitt.

Notes from the Namib 1. An ancient desert in transition

James and Thibaud Aronson post the first of four blogposts on their recent trip to Namibia and South Africa.

For the last trip for our book project on desert trees and restoration in arid regions, we started in Namibia, the only country in the world named after its desert! The Namib desert covers the entire coast of Namibia; it is more than 1500 km long and up to 200 km wide and extends north into Angola and south to South Africa. It is often said to be the oldest desert of the world, estimated by some to have continuously experienced arid or semi-arid conditions for the last 55- 80 million years. Certainly there is good evidence that it has been dry since the mid Miocene (11-16 million years ago). (The Atacama desert, from which we wrote last October, is also very old.  For comparison, the Sahara is less than than 7 million years old, and has experienced several much wetter periods since, some as recent as 10,000 years ago.

DSC06452

Some of the highest dunes in Africa are found at Sossusvlei, in central Namibia. The highest one, ‘Big Daddy’, is just a bit taller than the Eiffel Tower, reaching 325 meters.

The Namib is an exceptionally dry part of the Earth, with the coastal sections hardly receiving any rainfall at all. It does however receive coastal fogs, often for more than 100 days per year, which provide a significant source of moisture. Furthermore, the desert is traversed by 12 ephemeral rivers, which form striking linear oases, with lush riparian canopies. These canopies are dominated in most cases by very large Faidherbia albida trees, that remarkable tree known, among many other names, as Ana tree in southern Africa, and Gao in the Sahel.

DSC06116

Ana trees along the bed of the ephemeral Kuiseb river, central Namibia.

This tree – which until recently was classified as an Acacia, often shows a very unusual ‘reverse’ phenology compared to most woody plants in seasonally dry areas, as it keeps its leaves during the dry season and drops them in the wet season, when all the other deciduous trees and shrubs are growing new ones. Furthermore, its leaves as well as its pods – which it produces in copious numbers – are highly palatable to animals and high in protein. It is therefore an essential resource both for wild browsers and livestock. And there’s the shade it provides as well, which is a hugely important feature in all desert landscapes. In fact, Ana is one of the most important trees for herders throughout the continent, and is one of the few trees they deem more useful to them standing than cut down. As for the wildlife, these riparian canopies and the food they provide are very important. In fact, they enable some large mammal species, such as the kudu (Tragelaphus strepsiceros), and even rhinoceros and giraffe in the northern Namib, to range into a desert otherwise too harsh to support them.

IMGP7564

A springbok (Antidorcas marsupialis) in the shade of giant Ana trees on the banks of the Kuiseb River. This animal is well-known for its pronking behavior: individuals like this can jump up to two meters straight into the air as a display of fitness to discourage predators from giving chase.

Unusual among deserts, and likely because of its age, the Namib is home to a large number of endemic animal species, mainly beetles, reptiles – such as the Wedge-snouted Sand Lizard (Meroles cuneirostris), and birds, including the Dune Lark (Calendulauda erythrochlamys), Namibia’s only endemic bird.

IMGP7597 Meroles cuneirostris

The Wedge-snouted Sand Lizard. The shape of its nose is not just a funny accident of evolution: it actually allows this lizard to ‘dive’ into the sand to escape its predators. This lizard is also known to perform a ‘thermal dance’, lifting one foot at a time, or lie on its stomach with all four feet in the air, to reduce its contact with the sand that can reach a scorching 70 degrees C (158 F)!

 

IMGP8093

A Dune Lark, in the Namib-Rand Nature Reserve, in the process of building its nest in a hummock of grass. Its name is misleading; this bird actually prefers to live in the swale of vegetated dunes where its cryptic coloring makes it seemingly vanish as soon as you blink.

However, the Namib’s most famous endemic is undoubtedly Namibia’s national plant, the bizarre Welwitschia mirabilis. This is the sole species of the one genus in the venerable – dare we say inimitable? – Welwitschiaceae. This ‘monster’ is the only living member of a lineage more than 100 million years old. At a distance in certain lights you’d think it’s a beached giant squid…. but in fact it’s an ‘underground tree that can live well over a thousand years. Welwitschia is a near-endemic in Namibia as it occurs in southern Angola as well, but its entire geographic range is limited to the Namib Desert.

DSC05788

Female adult Welwitschia in its habitat. Note how the ends of the leaves dry out over time.

According to Dr. Theo Wassenaar, researcher at the 54-year old Gobabeb Research and Training Centre, this remarkable plant survives for centuries in a hyper arid desert by finding pockets of slightly moist soil in rock fissures. Having excavated more than two dozen plants, and examined their root systems in detail, he says “essentially it appears as if they forage for water, using their roots as scouts and sending in the troops (fine roots) when they find a pocket of moisture. And the differences in moisture can be slight, a few percent at most.”

An additional anomaly is that, although it is very hard to tell at first glance, each plant only has two leaves, gradually torn to tatters by the desert winds and sun. These two gigantic leaves never stop growing during the tree’s lifetime. It also is under threat, sad to say, as we will describe briefly a bit later.

DSC05578

Adult male Welwitschia in flower.

We traveled through nearly half of Namibia, from Walvis Bay in the center of the country, south to the Orange River on the South African border. And it is a breath-taking drive, because of the geology of this truly ancient desert, and the fact that the area has low population density, and still reasonably healthy ecosystems (except for the livestock fences galore) and large amounts of wildlife.

This state of affairs partly traces back to an inspired Nature Conservation Ordinance promulgated by the government back in 1975, which gave landowners property rights over the game animals on their land, within certain enlightened limits. Before that date, all wild animals, and all profits derived from them, went back to the state. Transferring ownership and the associated profits – from game viewing, trophy-hunting, and meat – to the landowners changed their perspective of wild animals. No longer competitors and predators of their livestock, to be kept out or exterminated, wild mammals became a source of revenue to be ‘cultivated’ and protected. As a result, the populations of large mammal species have seen impressive increases in the country. However, in some cases, this commercial incentive has led to some serious mismanagement. Indeed, some landowners have taken the view there is no such thing as too much game, and some private game farms maintain populations at unsustainably high densities in relatively small areas. Ironically, this can lead to some of the worst cases of overgrazing in the country!

Overall, the good health and integrity of the country’s ecosystems is a fantastic asset, of tremendous value for the nation. And – on paper, at least – the situation is admirable, with nearly 20% of the country in protected areas; since 2011, the entire coastline is protected inside three national parks, something no other country in the world can boast.

Still, the Namib desert and its fauna and flora face various threats, with dams affecting the hydrology of several ephemeral rivers, and a powerful and growing mining sector. In particular, the Welwitschia plains, where the largest southern population occurs, sit on top of a large uranium deposit. Efforts have been made to preserve the Welwitschia populations, and so far only two mines have been operating. But a third is currently being developed, which will be one of the world’s largest, and several other mining licenses may well be awarded if the price of uranium goes up again.

However the relationship of mining to restoration, and the role of the mining sector, are complex here as everywhere. As Dr Gabi Schneider, of the Namibian Uranium Institute told us, uranium mining is very localised, and the mine ‘footprints’ therefore are limited. Mining companies in Namibia have contributed in no small way to advancing the technology and science of arid land rehabilitation in the Namib, and also to research. Among other things they co-fund the Namib Ecological Restoration and Monitoring Unit program at Gobabeb. Uranium activities are governed by a Strategic Environmental Management Plan as well.

Furthermore, feral horses from abandoned tourism initiatives also roam the desert and eat Welwitschia leaves much more aggressively than native browsers do. Theo Wassenaar is working on this, and negotiating with local communities; it is a slow process but the Ministry of Environment and Tourism is also now engaging rural communities on this issue.

Browsed_Welwitschia

Horse-browsed Welwitschia in Welwitschia wash, near Gobabeb. Photo: Meg Schmitt, Gobabeb Research and Training Centre.

Further south, near the South African border, under the coastal dunes and off-shore, is one of the largest diamond deposits in the world, which have been mined for over a century. While some laudable efforts are being made to restore mine sites on this harsh, windy coast, it is a very difficult task, in one of the driest regions of the world.

During our travels, we met some of the restoration and conservation pioneers in the country, who are taking these vital actions to the next level, and working on more intimately linking wildlife conservation, the policies of both mining and tourism sectors and, in general, environmental education and capacity building. In the next blog post, we will talk more of the prospects and constraint for these initiatives.